\
-A241 107 O
T

Contract N61339-83-C-0044
January 15, 1990

Networking and
Communications
Technology
Laboratory

Design/Development Progress Report
Submission #2

J. Thompson
M. Georgiopolous
M. Basiouni

91-11424
ATy

Institute for Simulation and Training

12424 Researcn Parkway, Suite 300 -
Oriando FL 32826 Sr
University of Central Florida
Division of Sponsored Research IST-CR-20-1
|] +$ T oy

RErE Y v
SR N ol e
My sV B g
R & B 1, o e
i Fl WA N
R e £l
g N
B W o
B e B
9 H W e .
B B © :
Bg B % -
(S ‘; Y

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

AP ed

REPORT DOCUMENTATION PAGE VAR

SraTRICT VE O NVARYNGS

ta REPORT SECURITY CLASSIFILA TION)
UNCLASSIFLED NONE

22 SECURITY CLASSIFICATION AUTHORITY 3 OSTRIBUTION/ AVAILABIL:TY OF REPORT
N/A Approved for Public Release,

2b DECLASSIFICATION / DOWNGRADING SCHEDULE Distribution is unlimited
N/A
4 PERFORMING ORGANIZATION REPORT N'UMBER(S)

5 MONITORING ORGANIZATION REPORT NUMBER(S)

IST-CR-90-1 IST-CR-90-1
6a. NAME OF PERFORMING ORGANIZATICN 60 OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

: .) (If applicabie)
Institute for Simulation Project Manager for Training Devices

and Traipipe
6c. ADDRESS (City, State, and ZiP Code)

12424 Research Parkway, Suite 300 12350 Research Parkwav
Orlando, FL 32826 Orlando, FL 32826

7b ADDRESS City. State, and Z/IP Code)

B8a. NAME OF FUNDING /SPONSORING Bb. OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
DARPA/TTO N61339-89-C-0044

8c. ADDRESS (City, State, and 2IP Code) 1N S0URCE TF FunvenbeG WUMBERD

PROGRAV PROJECT TASK WORK UNIT
ELEMENT NO. NO NO. ACCESSION NO

1400 Wilson Blvd.
Arlington, VA 22209

11 TITLE (Include Security Classification)

Networking and Communications Technology Laboratory Design/Development Progress Report

e T

12. PERSONAL AUTHOR(S)
Bassiouni, M.; Georgiopolous, M.; Thompson, J.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yeor, Morith, Day) 5. PAGE COUNT

Progress fROM 4/89 To___1/90 1990, January 15
(16 SUPPLEMENTARY NOTATION : _ ' £

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GRCUP SUB-GROUP Networking and Communjcations Technology Laboratory, Simu-
lation Network Prototyping Testbed, SIMNET World
Access Testbed
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report presents a summary of the progress to date involving the design and
development of the Institute For Simulation and Training's Networking and Cemmuni-
cations Technology Laboratory. Within this laboratory there are two functional
testbeds which house the equipment and capabilities required for carrying out the
spccific research activities of this project: The Simulation Network Prototyping
Testbed and the SIMNET World Access Testbed.

The Simulation Network Prototyping Testbed supports rescarch in several aroas
pertaining to the use of Local Area Network (LAN) technology for interconnecting
Simulation Training Devices. These areas include:

Carrier Sense Multiple Access with Collision Detection protncol networks

(i.e. ETHERNET), Token-Ring Networks, Fiber Distributed Data Interface

(FDDI) Technology, Simulations Voice and Data Transmission, and Non-Homogeneous

20. OISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION —
UNCLASSIFIEOUNUMITED [SAME AS RPT. [DTIC USERS UM L A5 ST)

22s. NAME OF RESPONSIBLE INDIVIDUAL . 225, TECEPHONE (inciude Area Code) | 22, OFFICE SYMBOL
. Mke ‘;a,;n 38X Lf‘ﬁ - 330 -zZ’Tz Mo TND -EN)

DD Form 1473, JUN 86 Previous editions Sre obsslete SECURITY CLASSIFICATION OF TS PAGE .

A, .

Y Simulator Notwork i

Providing access to the SIMNET world is one of the majovr capabilities
[ST is developing in the Network and Communjcations Laboratory.
Additional SIMNET modules are being acquired to enhance the existing
suite of SIMNET equipment. The addition of this equipment will provide
a wide range of SIMNET capabilities to support ongoing research in
alternate network implementations, digital voice transmission, network
bench marking, and Long Haul Networking.

Y

NETWORKING AND COMMURNICATIONS TECHNOLOGY:

LABORATORY
DESIGN/DEVELOPMENT PROGRESS REPORT

Submission #2
Contract N61339-83-C-0044
15 January 1990

1. INTRODUCTION

This memo presents a summary of the progress made to date involving the
design and development of the Institute for Simulation and Training's Network
and Communications Technology Laboratory. Within this laboratory
there are two functional testbeds which house the equipment and capabilities
required for carrying out the specific research activities of this project. These
functional testbeds are the Simulation Network Prototyping Testbed and
the SIMNET World Access Testbed.

2. SIMULATION NETWORK PROTOTYPING TESTBED

This testbed supports research in several areas pertaining to the use of Local
Area Network (LLAN) technology for interconnecting Simulation Training
Devices. These research areas include: Carrier Sense Multiple Access with
Collision Detection protocol networks (i.e., ETHERNET), Token-Ring Networks,
Fiber Distributed Data Interface (FDDI) Technology, Simultaneous Voice and
Data Transmission, and Non-Homogeneous Simulator Network Interfacing.

2.1 Testbed Overall Design Approach

A flexible design approach has been developed and adopted for the
establishment of the IST Simulation Network Prototyping and Assessment
Testbed. The main goal of this approach is to facilitate the investigation and
evaluation of alternate network protocols using PC-based platforms. The PC's
will provide each SIMNET node with a quasi-contentionless ETHERNET
interface. When equipped with appropriate network controller boards, the PC
platforms readily provide a gateway capability between networks of different
topologies, such as ETHERNET and token-ring. Each PC will also be capable
of operating as a controlier/protocol translator providing the necessary services
for routing SIMNET packets to the alternate network prototypes.

2.2 Testbed Implementation

The Hewlett-Packard Vectra 386 PC/AT Tower System will be used as a data
logger, network traffic aenerator and protocol translator for the Testbed. Our
initial tests and evaluation of the inialligent Excelan 205E ETHERNET controller
boards have revealed that such intelligent boards wouwd nut be able to capture
all the broadcast data packets generated in the SIMNET real-time environment.
Our data capture prototyping effort will be based, therefore, on dumb
ETHERNET controller boards that are upiunesd i0r speed Cf the ow-ievel
transmit/receive operations. The high-leve! TCP/IP processing capability of the
intelligent boards, however, will still be used to provide file transfer services for

A

data analysis, software development, and other applications requiring PC-to-PC
ETHERNET communications.

Because of the many features of token-ring protocols, coupled with the
commercial availability of token-ring boards for the PC, our alternate network
proiotyping effort will focus on building a token-ring network configuration for
the SIMNET environment. Packets captured off the SIMNET ETHERNET by the
PC-platforms will be used to drive the token-ring LAN. Various performarnice
tests to evaluate the token-ring scheme will then be conducted.

2.2.1 Ongoing Activities
The following is a summary of the main activities that have beenr carried out
during the first phase of building the Alternate Network Testbed.

» We have gained considerable experience on using the 3-Com ETHERLINK
Il dumb ETHERNET boards. With these boards installed in the HP Vectra
20MHz PC's, we are able to transmit packets with data passed from the HP
Vectra to the 3-Com board, of length 64,128 and 256 bytes at rates of 1.8,
2.1 and 2.3 Mbits/sec., respectively. Furthermore, we are able to transmit
packets without data passed from the HP Vectra to the 3-Com board, of
length 64,128 and 256 bytes at rates of 3.6, 4.9 and 6.4 Mbits/sec.,
respectively. . The data capture capability of the boards using a single
receive buffer is approximately one half of the transmit capability or
1Mbits/sec. These measurements were made over Thin-Net ETHERNET
under light traific loads with minimal collisions.

+ We have begun preliminary efforts towards using the HP Vectra's to perform
data logging (i.e., to reac broadcast packets off the SIMNET ETHERNET,
time-stamp and store them to a disk or tape file). These early activities
include experimentation wiih various techniques for time stamping,
assessing the impact of missed packets on playback performance,
experimentation with optimum precision of time reference used for
timestamping.

« We have written a program to generate EHTERNET packets and transmit
them out onto the network. Currently, we are working on techniques to
provide programmable delay to packet transmissions, as well as generating
packets with fixed and jittering interarrival times. Software used to generate
simulated packet inter-arrival times in the network simulation software
models vill be reused to generate actual network traffic. This will allow us to
perform more accurate validation experiments on the software models
against actual hardware.

- We have written C-language programs to extract and manipulate different
fields within a SIMNET protoco! data unit (PDU). These programs consist of
several heaader files along with compilable C-routines and have been used
in several applications including capturing, manipulating and retransmitting
SIMNET M1 daia pdcheis, as weii as captuning ETHERNCT daia packets
from non-SIMNET simulators and transiating them into SIMNET compatible
packets.

We are currently able to pass data packets across the 4Mbits/sec 3-Com
TOKENLINK token-ring network boards between two of the HP Vectra's.
Experiments are underway to determine the maximum load of SIMNET
packets that can be communicated over the ring.

We are currently performing tests using Concurrent-C simulation models to
compare the performance of the early token release protocol of token-
ring LAN's with that of the late token release version. These tests will
give us an insight into the significance of the improvement in throughput
attained through the early release protocol, as well as the amount of network
overhead required to support prioritized tokens.

We are currently building a predictive mode! to investigate the greedy
node problem in Ethernet simulation networks. in our preliminary model,
the impact of a greedy node on the transmission of a single non-greedy
node is considered and the corresponding channel probabilities are
tabulated. It is hoped that this type of modeling will help us evaluate the
magniiuae of the greedy node problem and its impact on network packet
delay and packet loss.

We are in the process of completing experiments which will allow us to
implement ETHERNET-like protocols via the 3-Com Etherlink Il boards.
Tests have indicated that it may be possible to discard old state update
messages from the 3-Com board's transmit buffer and substitute them with
new (more recent) update messages. This will allow us to improve the delay
performance of the standard ETHERNET protocol.

NOTE: Listings of all software programs mentioned above are included as an

attachment.

2.2.2 Planned Activities
The following activities are planned ihe next phase of the project:

L]

improve the data capture capabilities of the 3-Com Etherlink 1l ETHERNET
controller board by implementing a scheme utilizing muftiple receive buffers.
This will allow us to determine the safe operating range of traffic load for
which minimal data loss occurs.

Design and build C-language software libraries for transmitting and
receiving both ETHERNET and token-ring data packete.

Design and build C-language software programs for performing data
logginng and artificial packet generation for both the ETHERNET and token-
ring LAN's.

Examine the token-ring priority scheme and evaluate its suitability and
potential benefits to optimize packet management in the SIMNET
environment.

+ Begin using the DURRA software analysis toc! developed by Carnegie
Mellon University's - Software Engineering Institute. This application is
written in ADA and will be implemented on a SUN Workstation. Plans are to
use DURRA as part of a research task involving the use of intelligent filtering
techniques applied at Gateways which interconnect multiple SIMNET type
networks via high capacity local area or long haul networks.

+ Continue activities involving the use of the 3-Com Etherlink Il board to
implcment ETHERNET-like protocols and investigate the capability of
changing some parameters of the stancard ETHERNET protocoi in an effort
to produce priorities on the network. Such parameters include the packet
slot-time which directly affects the calculation of the retransmission
back-off algorithm, as well as the back-off algorithm itself. We will aiso
focus on the implementation of a modification of the standard ETHERNET
protocol that reduces packet transmission delays, only at times when the
channel is sensed idie. The final thrust in this effort will be to implement the
GBRAM protoco! by utilizing the 3-Com ETHERNET board. GBRAM is
superior to the ETHERNET protoco! for medium te high traffic loads.

2.3 Data Analysis

Data Analysis capabilities in the laboratory will consits of hard and software
which will be used to manage and analyze the large amounts of data generated
by networked simulators. A variety of test experiments will be conducted in
order to evaluate the performance of the vairous LAN configurations. Different
performance measures (e.g., packet transmission delay, distribution of packet
inter-arrival times, utilization of transmission medium, LAN throughput, etc.) will
be collected and analyzed (using statistical inference) for both ETHERNET and
token-ring LAN's. Some of the statistical tests which will be applied include
confidence intervals, analysis of variance, goodness-of-fit tests (e.g., the
Kolmogorov-Smirnov test), and regression analysis. A VAX 3100 workstation
has been procured and will be used for the performance of the required
statistical tests and data analysis services.

2.4.1 Ongoing Activities
The following is a summary of the main activities that have been carried out
during the first phase of this research.

+ We have gained considerable experience on using the VAX 3100
workstation in both the system administration and user areas.

» Graphics software, the ULTRIX (UNIX for VAX) operating system and some
software development tools for the VAX 3100 workstation have been
received.

« Chris Pinon has attended the VMS System Management Class | to aid her in
administering the VAX 3100 (see Memo for Record from Chris Pinon dated
Nov. 20, 1989).

+ Local Software and Hardware support has been established through
Dingital Equipment Computer Users Scciety (DECUS). Membership has
been obtained and a Local User Group meeting was attended (see Memo
for Record from Chris Pinon dated Nov. 29, 1989).

» Procurement has begun for statistical packages and data analysis tools.

2.3.2 Planned Activities
The following activities are planned the next phase of the project:

« Develop a list and a detailed description of the performance measures,
statistical experiments and data analysis tests that will be used for
evaluating the performance of the ETHERNET interface, as well as the
prototype netwoiks to be implemented.

« Procure any statistical software packages found to be suitable for this
project.

+ Write any necessary software interfaces needed for the invocation of the
statistical packages mentioned above.

« Interface VAX DECNET to existing laboratory ETHERNET.

2.4 Simultaneous Voice and Data Transmission Research
Research involving the simultanecus transmission of digital voice and data will
be condurted utilizing Digital Signa!l Processing (DSP) modules interfaced to a
networked HP Vectra PC platform. The Ariel DSP56001 DSP modules were
chosen and two of the boards were procured for this effori.

2.4.1 Ongoing Activities
The following is a summary of the main activities that have been carried out
during the first phase of this research.

+ We have received the DSP56001 boards and are gaining experience on
using them to manipulate voice data under real-time constraints.

* We have nearly completed the program to packetize the digital voice data
that are stored in the memory of DSP56001 Board.

* We are in the process of writing a program to transfer the packetized data
from the DSP56001 board to the 3-Com ETHERNET board, and visa versa,
for transmission to and reception from the ETHERNET network.

+ We are in the process of writing a program to reassemble the packetized
data located in the memory of the DSP56001 board into a continuous
stream of digital data for subsequent conversion to analog information
(voice).

2.4.2 Planned Activities
The iollowing are planned activities which will be performed during the next
phase of the project:

+ Utilize the aforementioned C-language prograris to extract and manipulate
different fields within a protocol data unit (PDU) in order to cend the voice
data over the network in a form that is consistent with the SIMNET
communication protocol standard.

+ Utilize the capabilities of the DSP56001 board to distort the digiized voice
information in @ manner that corresponds to the degradation of the analcg
voice signal in the actual battle environment (RF phenomena).

+ Show experimentally, by using the DSP56001 board, the percentage of lost
voice packets that we can accommodate without affecting the clarity of the
voice signal. This will allow us to find the number of concurrent voice
conversations that the network can support in the ETHERNET protoccl
environment.

+ Use the DSP56001 boards to show the effect of certain signa! processing
techniques on the digitized speech signals (i.e., data compression, coding,
voice lisicner tests). By doing so we will expect to accommodate more
simultaneous voice conversations on the network.

+ Examine the ETHERNET boards carefully to determine the possibility of
implementing an alternative protocol (other than ETHERNET) that can
support simultaneous voice and data transmission over the network.

2.5 Non-Homogeneous Simulator Network Interfacing

The goal of this research is to provide a proof-of-principle demonstration of
interconnecting non-homogeneous simulators via a common network, and
provide the means for them to interact with one another.

This activity is on-going in nature and centers on the interconnection of non-
SIMNET devices ‘such as the ASAT's, the Silicon Graphics' Networkable Flight
Simulator, the SUN Microsystems’' AVIATOR Networkable Simulator, and
others) with the existing IST SIMNET devices. Protocol
translation/transformation, intelligent filtering techniques for gateways used to
intercornect LAN's of dittering topologies, and techniques for handling
inconsistencies in data protocol formats between dissimilar simulations are
some of the research areas being investigated under this task.

3. SIMNET WORLD ACCESS TESTBED

Providing access to the SIMNET World is one of the major capabilities IST is
developing in the Network and Communications Technology Laboratory.
Additional SIMNET modules are being acquired to enhance the existing suite of
SIMNET equipment. These new modules include a Stealth Vehicle, a Plan
View Display, a Data Logger/Playback System and a Long Haul
Communications Gateway. The addition of this equipment will provide a wide

—

——

range of SIMNET capabilities to support ongoing research efforts in the areas of
alternate network implementations, digital voice transmission, network
benchmarking, and Long Hau! Networking.

3.1 IST SIMNET Network Configurction

As mentioned earher, the current SIMNET configuration uses an ETHERNET
network to provide data communications between simulators. The SIMNET-T
site at Ft. Knox uses an interconnect scheme which connects up to eight
SIMNET modules together via a multi-port transceiver box, which in turn is
attached to the ETHERNET coax.al cable. In the IST Lab, the SIMNET modules
are interconnceted via @ THIN-NET ETHERNET network. THIN-NET uses 50
ohm coaxial cable similar to RG58 to interconnect the nodes on the network.
Each node has a small transceiver attached directly to it which provides the
required interface to the coaxial cable. This THIN-NET implementation provides
a flexible interconrect scheme, without any loss in performance and is more
suited to laboratory requirements.

Currently in the IST Laboratory, there are several clusters of computers which
are being used for various research activities. By running a .. ries of coaxial
cables around the lab we are able 1o provide a variety of interconncetions
between the clusters. For example, the SIMNET modules are linked together in
one cluster and the networking research equipment (HP LAN Analyzer and
PC's with ETHERNET cards) are linked in another. These two clusters can be
tied together whenever desired by simply removing two cable termination
devices and hooking the two cables together. This scheme allows for the
sharing oi resources, no matter where they may be physically located in the lab.

3.2 SIMNET Compatible Interconnect Capabilities

This capability in the lab refers specifically to the concept of providing gateways
into the SIMNET World. The first gateway to be procured will be a BBN SIMNET
Gateway. This gateway is based on the BBN Butterfly computer and mosi
probably will be a closed system, meaning that we will have no way to alter its
software and/or hardwars to experiment with it. The SIMNET Gateway is being
procured, and is expected to be deliverad to IST within the next two months.

Commercially available long haul networking hardware is currently being
evaluated to determine its suitability for the SIMNET application. Details of this
evaluation can be found in the attached memo. Notes on IST Long-haul
Interconnectivity, dated 11/29/89. To achieve interconnectivity, we vill
procure several ETHERNET bridges which wiil allow for limited dial-up access
to the IST SIMNET world, as well as support researcl: being performed in the
area of Long Haul Networking.

We have initiated conversations with personnei at Human Engineering Labs
(HEL) in Aberdeen Proving Grounds, MD. Preliminary plans are to establish a
long haul link between the IST SIMNET Laboratory and HEL's laboratories.
There are tentative travel plans for two IST researchers to visit HEL (Aberdeen,
MD) during the month of January 1990 to further discuss this project.

3.3 Simulation Network Performance Benchmarks

The functional requirements for a set of benchmarks to be used to evaluate
training device network performance and interfacing capabilities will be
established. These henchmarks will aid in the validation of interfacing methcds
between non-homogeneous simulators and compatibility with the current
SIMNET communications protocol standard. The benchmarks will consist of a
set of software programs which will perform automated analysis of incoming
network data, either in real-time 2r off-line, and will provide an orderly method of
evaluating a networked training device's network performance.

Initial benchmark development efforts will employ the use of the VAX 3100
workstation tor software development and data analysis. This benchmark work
depends highly on the simulation network protocol standards currently under
development. Therefore, these activities will be closely monitored and attended
to ensure benchmark analysis techniques are valid meaningful measures of
performance.

Our initial evaluations indicate a software system called DURRA might be a
usetul tool to aid in benchmark development. DURRA was developed by the
Software Engineering Institute (SE!) at Carnegie Mellon University. IST is the
first cite to receive DURRA. DURRA is essentially a system for predicting the
preformance networked computing nodes. DURRA provides a flexible
environment for specifying the interconnection of these nodes (i.e. network
topology). as well as predicting the system performance under varying loades
and usages. DURRA programs can be written which can perform network
assessments off-line. On-line assessments will require enhancements which
will be pursued by IST and SEI.

4. CONCLUSIONS

This report has presented a summary of the procurements, activities and
progress made towards the development of the IST Network and
Communications Technology Laboratory. Comments and/or suggestions are
encouraged and should be directed to:

Jack Thompson
Institute for Simulation and Training
University of Central Florida
12124 Research Parkway
Orlando, FL 32826

ATTACHMENT A

MEMORANDUMS

A

MEMORANDUM FOR RECORD

To: Jack Thompson
From: Chris Pinon

Subject: VMS System Management I Class
November 13-17
DEC Education Center
Maitland, Florida

Date: November 20, 1989

Purpose:

The purpose of taking this class was to become more familiar with
the VAXstation's operating system and to learn skills and
commands assocliated with managing the system. The VAXstation
3100 is an integral part of the Networkinrg laboratory. The
training was necessary to aid in the integration of the VAX onto
the network.

Key Topics:

The class provided an overview of the VMS operating system and
the role of the system manager in maintaining the system. Topics
discussed include:

- Understanding the User Environment
Managing Systemn Users
- Managing Queues
- Managing Disk and Tape Volumes
- Customizing the Systen
- Starting Up and Shutting Down the System
~ Maintaining System Integrity
- Monitoring System Performance
- Installing and Updating System Software

Conclusion:

The class provided an excellent overview of the VMS operating
system and gave the student many valuable tools that can be
implemented immediately. The class fulfilled the purpose
detailed above.

Cepy to:
B. Goldiez, S. Smitl.,, J. Cadiz, R. Ouyang, M. Georgiopoulos,
M. Bassiounni

Memorandum

To: Jack Thompson
From: Chris Pinon
Subject: Central Florida DECUS LUG
November Meeting
Merritt Island Public Library
Date: November 29, 1989

Purpose:

The purpose of the meeting was to meet with members of the
Central Florida DECUS LUG (DEC users Local Users Group). This
group is a valuable resource for help concerning the VAXstation.
This is the first meeting attended since joining DECUS. I also
sought contacts to help with the transfer of data from one type
of tape media to another, an activity essential for the
statistical study of the SIMNET data packets and for examining
the program from Carnegie-Mel.on University

Key Topics:
The meeting took place at the Merritt Island Public Library and
began at 9:00 am. The meeting proceeded as follows:

1) DECUS business

2) DIGITAL update - an overview of new products on the
market
3) "“Leveraging PC Applications on the VAX" - a presentation

by RECITAL Corporation
LUNCH BREAK

4) "PCSA and 386WAREY" - a presentation by Bob Thomson,
Computer Operations Supervisor for Martin Marietta
Aerospace, KSC

5) General Question and Answer session - A chance for all
to discuss problems and solutions. Also a chance to share
tips and shortcuts.

The meeting ended at 3:30 pm. I spent some time talking to Mr.
Christopher Korscn, Software Engineer for Level Five Research,
Inc. in Indialantic. He has the means to transfer 8mm, 9mm and
TK70 tapes to the TK50 format our computer requires. All IST has
to do is provide the tape.

Conclusion:

This meeting provided some valuable information concerning VAX
computers in general and some SW products available on the market
at this time. It also provided some business contacts that may
be valuable in the near future.

Copy to: B. Goldiez, G. Winkler, M. Bassiouni

To: Jack Thompson

From: Jorge Cadiz
Date: 11/29/89
Subject: Notes on IST Long-haul Interconnectivity

It seems that we have the choice to make as far as what
type of interface device we would like to use in the Long-
haul environment. The three devices that we can use are
Bridges, Routers, and Gateways. Following are definitions
for these devices. These definitions were extracted freom
TRW's Unified LAN I Components Guide (July, 1989).

Bridge: A router that connects two or more networks and
forwards packets among them. Usually, briages operate at
the physical network level. For example, an ETHERNET
bridge connects two physical ETHERNET cables and forwards
from one cable to the other exactly those packets that are
not local. Bridges differ from repeaters because bridges
store and forward complete packets while repeaters forward
electrical signals.

Router: Any machine responsible for making decisions
about which of several paths network (or Internet) traffic
will follow. At the lowest level, a physical network
bridge 1s a router because it chooses whether to pass
packets from one physical wire to another. Within a long
haul network, each individual packet switch is a router
because it chooses routes for individual packets. In the
Internet, each IP gateway 1s a router because it uses I
destination addresses to choose routes.

Gateway: A special purpose, dedicated computer that
attaches two or more networks and routes packets from one
to the other. In particular, an Internet gateway routes IF
datagrams among the networks to which it connects.

Gateways route packets to other gateways until they can be
delivered to the fiual destination directly across one
physical network. The term is loosely applied to any
machine that transfers information from one network to
another, as in mail gateway.

After looking at some literature on the three devices, it
seems that a bridge may be the type of device that we may
want to procure. Bridges are generally faster than
routers, and they perform packet filtering in order to
prevent some of the "local" traffic from getting onto the
long-haul medium.

Routers seem like they may provide more functions than are
necessary for our application. In the SIMNET environment a
large percentage of the traffic has a broadcast destination
address. This means that most of the traffic generated at
the different nodes will be looking to be transmitted over

—_—

the network. This will require a "dumb” interface which
simply passes the traffic to the remote location.

e A gateway will provide a connection between two segments of
N network that are driven by a different type of protocol.
These "protocol translators"™ are not what we need since the
SIMNET units communicate with the same protocols.

* Following is a diagram which is my perception of the long-
haul network that will be established by
IST

IST ETHERNE1

SIEPIIIIS SIS SI ST

Long Haul
Connection

FLPPPEIEPIIIIIESIEFIIIOIIIIIIIIIIIIIIS

PIIPIEIIS ”

ROOOQO

SIMULATORS

SIMNET
NETWORK

. I have gathered some product information on some

Bridges, Routers, Brouters, etc. Here is a table which
summarizes the pricing information.
Company Device Price
Advanced ACS 4110 $7,500
) Computer Remote ETHERNET
Communications Bridge
Advanced ACS 4030 $4,975-55,575
Computer Remote ETHERNET
Communications Bridge
Halley Systems ConnectLAN 100 $7?
Local and Remote
Brouter
Blackbox Remcte Bridge $6,600
Corporation 56Kbps
Blackbox Remote Bridge =512k
Corporation T1
A=4

ATTACHMENT B

LIST OF ALL SOFTWARE PROGRAMS

SEx ir**/
* * /
* CTO3L.C.CZ * /
* * /

(* Description: This file contains the code which calls the funtiaons * /
* provide by the CTO3L.ASM to receive/transmit packets *

dx through 3COM EtherLinkii board. */
/* * /
***'/

#include <stdio.h»>
axtern cInitAdapters(:
xtern cInitParameters():
extern cResetAdapter():
extern cWhoAmI(:

xtern cRdARxFilter():
xtern cWrRxFilter(;
extlern cPutTxData(}:
;xtern cGetRxDatal }:
@tern cSetl.ookAhead/(}:
extern cxXxmitlfy:

'
I

»Tern cRovSsome! 1!

maint
"Jv|"

3
(t

”
rt
3

ar

.

u

n

IO
S TN

3

< 1
“ha le
char no
char no
char no
char nondl4i:
char nonSidl:
char noné:
char cdendl4]:
l char *argo:
short arags:
‘ char non7:
; b3

pu

3

1
P
3020

b By

o3

[V

struct WhoStruct |

unsiagned
char ver
char ver
i char sub

char addrial:
major:

minor:;

ver:

| char type ds:

char tvoe

adapter:

char init status:

char rese
char num_
short siz

5 long ttl
‘ long ttl
long ttl
long ttl
long ttl
lona ttl
long tt]

char ¥tr

rved;

tran buf;

e_tran_ buf:

tran cnt;

tran err cnt:
tran timeout cnt;
recp ant:

recv bdr cnt:
recv err cnt:
retrv cnt;

mode Bt

h—

char wailt mode:
char hdr_srec data:
b

Vo struct PKtStr |
char inp(1500]:
Yoo

struct WhoStruct far *Who:
struct PKtStr far *pPkt:
struct ini hd- *parmsdr:

int ttlpl. nb, flags. regid. nregid:
char far *paddr = "This is a test onlv%:

int rc., rxf=0x000c. rrxt, Adapters=0:
int rs = 0, icnt = O:
parmsdr-~'en=0x17;
parmsdr->nonl=0x00:
parnsar->non2=0x00:
parmsdr--non3 (0 1=0x00:
pvarmsdr->non3[11=0x00:
parmsdr->non4i{CJ=0x00:
parmsdr-»>nond!{ 1 1=0x00:
parmsdr--nond{ 21=0x00:
parmsdr->nend [3 1=0x00:
parmsdr->non5{ 0 1=0x00
varmsdr--nons{1 [=0x00:
{ parmsdr--nons(2 1=0%x00:
| varmsdr->nons[3 1=0x00:
parmsdr->non6=0x00:
parmsdr->cdend{ 01=0x00:
carmsdr-»cdend! 1]=0x00:
parmsdr--cdend! 2)=0x00:
parmsdr--cdend|{ 3]=0x00:

P3E4
e
KA

/* pvarmsdr->arco = "c:\3com\ether503.svs /a:2e0/m:d4 /v :1/d:1/1:3\n": */
parmsdr-rarago = "c:\\3com\\ether503.sys /A:2e0 /D:1 /T:3\0x0a":

parmsdr-rargs=getds(:
parmsdr->non7=0x00;

rec=getds({):
printfi{"getds Ox%»x\n",rc):

rc=clinitParameters(parmsdr);

printf/"cinitParameters returns %d\n”,rc);

, rc=cInitAdapters(&Adapters);

i printf("cInitAdapters returns %d, Adp=%d\n”,rc, Adapters):

rc=cSetlLookAhead(32):
printf(”cSetl.ookAhead returns %d\n",rc):

rc=cWhoAml (&Who)
printf("cWhoAml returns %d\n",rc):
printf("addr = %02x %02x %02x", Who->addr([O0],
Who->addr{1]), Who->addr[2]);
I printf(" %02x %02x %02x\n", Who->addr([3],
; Who->addr([4]), Who->addr{5));
printf("ver maior %02x ver minor %02x\n", Who->»>ver_maior, Who->ver minor):
printf("transfer mode %x wait mode Zx\n", Who--xfr mode. Who->wait mode):
; printfrttl recp cnt td (0Ox*4xI\n", Who=-»ttl recp cnt, Who-~ttil recn cnti:

Il B2

rc=cWrRxFilter(rxf):

printf ("cWrRxFilter returns %d\n".,rc);
rc=cRdRxFilter(&rrxf);

printf("cRdRxFilter returns %4, filter=%x\n",rc,rrxf);

re = ' '
printf("Receiver or Sender ? (r/s)\n");
while (((rs = getchar()) != ’'r’) && (rs != ’s’))} {

printf("Receiver or Sender ? (r/s)\n"):
Yy
it (rs == 'r’) |
while (!'kbhit() Y
rc=cRcvSome ! &PKkt) ;
1 ¥ (rc¢ > D) |
j icnt++:

printf("cRcvSome returns %d\n",rc):
for (1=0; i<rc: 1++)
f printf("%02x",Pkt->inpli}):

}
printfi"Total input count %d\n",icnt):

else |
ttipl = OX64:
nb = Oxad:
; flags = 0x0060:
| reqgid = 0x0001;

nrecid = 0x0011:
Yor (1i=0: 1<10: 1++) ¢
! rc=cXmitl(ttlpl, nb, flags, reaid, paddr, &nreagid):

rc=cResetAdapter():
printf("ckesetAdapter returns %d\n",rc);
exit (0

“0id myvRxProcess(Status, PacketSize, RequestID, PacketHeader)
nt Status, PacketSize, RequestiID;
<har far *Packetleader;

/* fprintf(stderr,"Called by ASM - myRxProcess\nNot implement vet\n"});
fprintf(stderr,"Status=%d, PacketSize=%d, ReguestID=%d\n",Status, PacketSize,

RequestID); */
void myTxProcess(Status, RequestID)
int Status, RequestID;
/* printf("Called by ASM - mvTxProcess\nNot implement vet\n");

printf("Status=%d, RequestID=%d\n",Status, RequestID); */

void myvExitRcecvInt()

g

/* printtf("called by ASM - myExitRevint\nNot implement vet\n"): */
B-3

title cto3l.asm

E R E 2SR RS XSRS R AR R RS R A RSN AAR SRR RS RS RES R Rt E SRR

-
’

sFile: CTO3L.ASM

/Description: This file contains subroutines which provide a
: C program with an interface to the 3L 1.0 routines.

khkkhkhkkhkhkhkhhkkhkdhkhkhkhhkkhkhhkhhkhAnkkhkrhkrhhkhkhrhkhkhhhhrkhrkhkhhkhhkhhkhhkhhhkhkhkhkhrhhkkhkkhx

Functions called by C
'UBLIC _getds

PUBLIC _cInitParameters
YUBLIC _cInitAdapters
JUBLIC _cResetAdapter
PUBLIC _cWhoAmI
IUBLIC _cRdRxFilter
UBLIC _cWrRxFilter
PUBLIC _cPutTxData
UBLIC _cGetRxData
}UBLIC _cSetLookAhead
UBLIC _etext

S2UBLIC _cRcvSome
JUBLIC _cXmitl

;Need to be written in C

wtin _myExitRcvInt ‘near
extrn _myRxProcess inear
2xtrn _myTxProcess ‘near

}Functions provide by this file
PUBL.IC ExitRcvInt

PUBLIC RXProcess

PUBL.IC TxProcess

3L functions

rxtrn InitParameters :near
extrn InitAdapters near
aextrn WhoAmI :near
gxtrn ResetAdapter tnear
extrn RdRxFilter :near
extrn WrRxFilter tnear
txtrn GetRxData :near
xtrn SetLookAhead :hear
extrn PutTxData :nhear
if equ Oah
cr equ 0dh
?print macro strloc ;print string at strloc

local strloc

push ax
' push cx

push ds

push dx

mov dx,seg striloc

mov ds ,dx

kbdin

gkbdchk

1

}ODE

TEA L

lGROUP
_TEXT

JATA
DATA

CODE

ATA
is_ds
_etext

Lectsv
retsav
arlf

pvklock
pklen
bkerr
ykent
pkcount
skthd
Sktdat

?ATA

mov
mov
int
pop
pop
pop
pop
endm

macro
mov
int
endm

macro
mov

int
endm
GROUP
segment
group
assume

ends

segment
ends

segment

LCODE ends

segment
dw
db

dd
dw
db

db
dw
dw
dw
dw
db
db

ends

segment
label
ends
segment
label
ends
segment
label
ends

dx ,offset strloc

ah,09h
21h
dx
ds
cx
ax
;get kbd char in al
ah, 8
21h ;wait for key
;check for kbd char
ah,0bh
21h ;returns al: O-nokey, ff-keyhit
_TEXT, DATA, ICODE
byte public ‘CODE’
_DATA, _BSS
cs:_TEXT, ds:DGROUP, ss:DGROUP

word public ‘CODE’

word puklic ’CODE’

v

22h dup (0) ;save all vectors so we can cleanup
5

cr,1f,’s’
0
0
0
0
¢]
32 dup(0)

1500 dup(0)

word public ‘DATA’
byte

word public ’'BSS’
byte

word public ‘DATA’
byte

r

_TEXT SEGMENT
ASSUME CS: TEXT, DS:DGROUP, SS:DGROUP

_getds proc near

- mov ax,ds
nov cs:his_ds,ax
ret

_getds endp

s_cInitAdapters: This procedure provides the glue between a C
program and the 3L 1.0 InitAdapters function.

;Calling Seqguence:
int cInitAdapters(&nAdapters)

; Input Parameters:
None

;Output Parameters:
int nAdapters

JReturns:
: The return value of the TnitAdapters function

_cInitAdapters proc near

push bp

mov bp,sp

push si

push di

push ds

nov ax,cs

mov ds,ax

mov di,offset CODE:RxProcess

call IinitAdapters

pop ds

mov di ,word ptr({bp+4]
mov word ptr[di},cx
pop di

pop si

pop bp

ret

rcInitAdapters endp

- ——— . — - ———— = A= e e S A T ——— " e T —— " —— A = e — -

~e

_cInitParameters: This procedure provides the glue between a C
program and the 3L 1.0 InitAdapters function.

Calling Sequence:
int cInitParameters(Parms)

:Input Parameters:
char *Parms - Pointer to a structure with overrides of default

R-A

; parameters.

Output Parameters:
, Ncone

Returns:
The re*turn value of the InitParameters function

~

- ———— — —— A —— — ———— - — - - ——— = = .. — - ——— - — — T - — T —— - - o——— —

cInitParameter=s proc near

push bp
mov bp,sp
push si
push di
push ds

]
mov bx, [bp+4]
mov ax,ds
mov es,ax
mov ax,cs
mov ds,ax
call savvecs
call InitParameters

pop ds

| pop di
pop si

| pop ho

i ret
cinitParameters endp

; cResetAdapter: This procedure provides the glue between a C
program and the 31 1.0 ResetAdapters function.

;Calling Sequence:
int cResetAdapter()

;Input Parameters:
; None

Qutput Parameters:
None

-~

Returns:
; The return value of the ResetAdapter function

“‘cResetAdapter proc near

push bp
mov bp, sp
push si
push di
push ds
mov dx, 0
mov ax,cs

i mov ds,ax

1 nov dl,o
call ResetAdapter

call fixvecs

pop ds

pop di

pop si

pop bp

ret
 CResetAdapter endp

cWhoAml: This procedure provides the glue between a C
program and the 31. 1.0 WroAml function.

'Calling Sequence:

! int cWhoamI | &WhoPtr)

sInput Parameters:
None
;Output Parameters:
: struct WhoStruct far *WhoPtr - Far pointer to the WhoAmI structure

.ea

4
;Returns:
! The return value of the WhoA~I function

.CoahoAm! proc near

i push bp
nov bn,sp
push si
! push d:
| push ds
; mov dx,0
mov ax,cs
mov ds,ax
! cali wWhoAmI
pop ds
. mov si,[bp+4]
! mov word ptr {si],di
mov word ptr {si+2],es
pop di
pop s
pop bp
ret

cWhoAmT endp

: cRdRxFilter: This procedure provides the glue between a C
: rogram and the 31, 1.0 RdARxFilter function.

DRGSRt

M-

|

;Calling Sequence:
: int cRdRxFilter(&RxFilter)

:Input Parameters:
None

,kutput Parameters:
int RxFilter - The receive filter value

ieturns:
The return value of the RdRxFilter function

:] ________________ e

CcRdRxF1lter proc near

. push bp
! mnov bn, 5D
’ push 51
push d1
push ds
nov ax,cs
mov ds, ax
nov ax , O
call RdRxFilter
OD ds
mov d1, Tbhp+4]
now dlt, bx
i
POy il
pop =
pop op
ret

CWrRkxFilter: This prrcedure provides the glue between a C
proaram and the 3L 1.0 WrRxFilter function.

:Calling Sequence:
int CWrRxFilter(RxFilter)

;input Parameters:
1int RxFilter - The new receive filter value

;Output Parameters:
; None

,'Returns:
The return value of the WrRxFilter function

cWrRxFilter proc near
push bp
mowv bp,sp
push e
push i

rnh 1

mov ax,cs
mov ds,ax
mov dx, 0
mov ax,[bp+4)

call WrRxFilter

pop di
pop s1
pop ds
pop bp
ret

!lcwWrRxFilter endp

;_cSetl.ookAhead: This procedure provides the glue between a C
! program and the 3L 1.0 Setl.ookAhead function.
|
;Callinag Sequence:

int cSetl.ookAhead(NumBytes)

;Input Parameters:
: int NumBytes - The nnumber of bytes of look ahead data

']Output Paraneters:

H None

Returns:

; The return value of the Setl.ookAhead function

1cSetl.ookAhead proc near

push bp

mov bp,sp
rush si

push di

push ds

mov ax,cs
nov ds,ax
mnov dx, 0

mov ax,{bp+4)

call Setl.ookAhead

pop ds
pop di
pop si
pop bp
ret

| cSetLookAhead endp

_cPutTxData: This procedure provides the glue between a C
program and the 3L 1.0 PutTxData function.

Calling Sequence: bl

|

H int cPutTxData(TotalPacketLen, NumBytes, Flags, RequestID,
g PacketAddr, &NewRequestID)

Input Parameters:
int TotalPacketLen - The total packet length (first call only)
int NumBytes - The nnumber of bytes to transfer this call

. int Flags - The DL flags

: int RequestID - Used if not the first call

char far * PacketAddr - A far pointer to the packet

AT

;Output Parameters:
int NewRequestID - Returned after first call

/Returns:
; The return value of the PutTxData function

_cbPutTxDAta proc near

; push bp
. mov bp, sp
push si
push di
} push ds
nov ax,ds
: mnov es,ax
i
mov bx, [bp+41
‘ nov cx, [bp+6]
mev dl,byte ptr[bp+8]
nov dh,byte ptr{bp+10]
i mov si,[bp+12]
nowv di,offset CODE:TxProcess
nov di,offffh ; no TxProcess
call PutTxData
pop ds
xchg dh,dl
Xor dh,dh
mov di,[bp+16]
mov [di],dx
pop di
pop si
pop bp
ret

cPutTxData endp

l

!thetRxData: This procedure provides the glue between a C
program and the 3L 1.0 GetRxData function.

Calling Sequence:
l int cGetRxData(&NumBytes, Flags, RequestID, PacketAddr)

arnput Parameters:
; int NumBytes - The nnumber of bytes to transfer this call
B-11

h_ o o

—

-
’

’

’

’
.
’
-
’

int Flag:. - The DL flags
int RequestID - The request identifier
char far * PacketAddr - A far pointer to the packet to copy the data

Output Parameters:
int NumBytes - The actual number of bytes transferred

Returns:

The return value of the GetRxData function

cGetRxData proc near

push
mov

push
push
push

mov
nov
nov
nov
mov
mov
call

pop
mov
mov

pop
pop
pop
ret

TxProcess:

bp
bp,sp
si
di
ds

di,[bp+4]
cx,ss:[{di]
dl,byte ptr[bp+6]
dh,byte ptr([bp+8]

di,[bp+10)]
es,[bp+12]
GetRxData

ds

i1i, [bp+4]

ss:(di},cx
di

si

bp

_cGetRxData endp

This procedure is the protocol-side routine which is called

when a packet has finished trznsmitting (see _cInitAdapters). It
provides the glue between the 3L 1.0 routines and C routine called
myTxProcess.

;myTxProcess Calling Sequence:

void myTxProcess(Status, RequestID)

myTxProcess

Input Parameters:

int Status - Receive status -
int RequestID - The request identifier -

myTxProcess
Nothing

push
push
push
push
push

Returns:

B e e - — . - s W - —————— A Y - ——— - ———— - W - —— e " T S S G T G e e v - - = - —

TxProcess proc near

bp
si
di
ds
es
B-12

push ax
mov ax,cs:his_ds
mov ds,ax
; mov es,ax
pop ax
xXor cx,CX
mov cl,dh
Xor dh,dh
push cX
push ax
call _myTxProcess
add sp, 4
pop es
pop ds
pop di
pop si
pop bp
ret

I'XProcess endu

:ExitRcvInt: This procedure is the protocol-side routine which is called
when the 3L has completed a receive interrupt. It provides
‘ the glue between the 3L 1.0 routines and C routine called

1 ; myExitRcvInt.

myExitRcvInt Calling Sequence:
; void myExitRcvInt()

i myExitRcvInt Input Parameters:
: None

myExitRcvInt Returns:
Nothing

xitRcvInt proc near

push bp

push ds

push es

push si

push di

push ax

mov ax,cs:his_ds
mnov ds,ax

mov es,ax

pop ax

call _myExitRcvInt
pop di

pop si

pop es
B-113

B e —

; pop ds
Y pop bp
iret
exitRcvInt endp

T e oo e e
;RxProcess: This procedure is the protocol-side routine which is called
when a packet has been received (see _cInitAdapters). It provides
the glue between the 3L 1.0 routines and C routine called

; myRxProcess.

myRxProcess Calling Sequence:
) void myRxProcess(Status, PacketSize, RequestID, PacketHeader)

~e

myRxProcess Input Parameters:

v int Status - Receive status

; int PacketSize - Size of the received packet

int RequestID -~ The request identifier

char far *PacketHeader -~ Address of the virtual packet header

~e

*myRxProcess Returns:
Nothing

. ——— ——————— - ——— ————— " ——— — " —— ——— —— — i —— > v ———— " ——— ——— " — " o~ —

xProcess proc near

“lomment #
push bx
push cX
push dx
push si
push di
push bp
push ds
push es
pushf
push es
push di
push ax
mov ax,cs:his_ds

f mov ds,ax

} mov es,ax
pop ax

l xor bx, bx
nov bl,dh
xor dh,dh

! push bx

push cx

push ax

call _myRxProcess
adad sp,10

popf

pop es

pop ds

B-14

pop bp
pop di
pop si
pop dx
pop cx
7 pop bx
ret
#
push bx
push cx
test cs:pklock,0ftfh
jz getp
Hontget:
rinc pkcount
inc cs:pkcount
] mov cx,0 ;zero length (just discard)
jmp goget
Jgetp:
I ; At this point we could check es:di packet header data
; to make some decision on packet dispeosition
’ ; lock our buffer and get packet data into it
mov cs:pklock,0ffh ;lock buff
mov cs:pkerr,O
~goget:
‘f mov ax,CODE
mov es,ax
mov di,offset cs:pkthd ;buffer
or dl,40h ;release buffer
call GetRxData
jcxz nolen
mov cs:pkerr,ax
mov cs:pklen,cx
holen:
pop cx
pop bx
ret
RxProcess endp

- - —— - — - ————— —— ——— — — > L — - — - T S — - ———

E transmit one packet

_cXmitl proc near
push bp
mov bp,sp
push si
push di
push ds
mov ax,ds
mov es,ax
l ;setup for PutTxData
mov bx, {bp+4] ;set lengths
| B-15

mov cx, [bp+6]

mov dl, byte ptr[bp+8]
mov dh, byte ptr(bp+10]
mov si,[bp+12]

mov di,offffh :rno TxProcess
call PutTxData

pop ds

xchg dh,d1l

XOor dh,dh

mov di,[bp+16]

mov [di],dx

pop di

pop si

pop bp

ret

cXmitl endp

—— - ——— ————— i — ————— —— " ———— ——— - f— ——— - —— —— —_— _——; — ———— - ——— - ——— - —— o1 o —

: _CRcvSome proc near
following code to dump received packets for a fixed time

————————— ———— T~ — —————— —— - ————— ——————— ——————————— - ———— — f——— ————

_CRcvSome proc near
i push bp
” mov bp,sp
push si
push di
push ds
mov ax,cs
mov ds,ax
hkpk:
test cs:pklock,0ffh rgot a pkt?
inz lstpkt
mov cs:pklen, O ; No pkt, move 0 to pklen
jmp wedone
lstpkt:
test cs:pkerr ,O0ffffh jany error
jz dmpk
jmp wedone
mpk :
cmp cs:pklen,0
jnz pkok
jmp wedone
kok:
cmp cs:pklen, 256
jle wedone
mov cs:pklen, 256 ;limit dump to 1st 256 bytes
edone:
mov cs:pklock, 0
inc cs:pkent
mov ax,cs
pop ds
mov si,[bp+4]
mov word ptr {si), offset cs:pkthd
mov word ptr [si+2], ax
mov ax,cs:pklen

pop di
pop si
pop bp
ret

—d

cRcvSome endp

———— - ——— —— —— > —— i M —— — AP W W in S e . —— — A — - B = — S — . e G - —— T - S a_ -

avvecs proc near
push ds
push es
push si
push di
push CcX
mov ax,ds
mov es,ax
Xor ax,ax
mov ds,ax
mov Ccx,22h*2 ;vectors 0 - 21h, 2 wds per
mov di,offset CODE:vectsv
Xor si,si
cld
cli
i rep mOVSW ;save ‘em all
o sti
I
pop cX
pop di
pop si
pop es
pop ds
ret

savvecs endp

- — —————— T —— ——— T —— ————_——— an ——— —— ———— — - T — — > Mo Tw= G T . - T o —— - ——

ixvecs proc near
push es

7 push S1
push da
push cX
push ax
xXor ax,ax
mov es,ax

| mov cx,22h*2 ;vectors 0 -~ 21h, 2 wds per

I mov si,offset CODE:vectsv
xor di,di
cld
cli
rep MOVSW ;restore ‘em all
sti
pop ax
pop cx
pop di

! pop si
! pop es

ret

}ixvecs endp

B-17

.

SIUR SN

_TEXT ends
end

O

./***/

* * /

* CTO3LC.C * /

/x * /

4* Description: This file contains the code which calls the funtions * /

* provide by the CTO3L.ASM to receive/transmit packets * /

. /* through 3COM Token Ring board. * /
/* */

) ***)

#

include <stdio.h>

! xtern cInitAdapters():

xtern cInitParameters():

extern cResetAdapter():

xtern cRdRxFilter():

]xtern cWhoAmI{);

xtern C(JWrRxFilter():
extern cPutTxDatal(}:

xtern cGetRxData();
xtern cSetl.ookAhead():
extern cXmitl();

xtern cRcvSome() :

main()

int 1:

struct ini_hdr ¢
char len:
char noni:
char non2z:
char non3[2}:
char nond[41:
char nonsl4):
char noné;
char cdend([4]:
char *argo:
short arags:
char non7:

Y o:

struct WhoStruct ¢
unsigned char addrl6];
char ver_major:
char ver minor:
char sub ver;
char type ds:
char type_adapter:
char init_status;
char reserved:
char num_tran_buf;
short size_tran buf:
long ttl_tran_cnt;
long ttl_tran_err_cnt:
long ttl tran_timeout cnt:
long ttl_recp_cnt;
long ttl_recv_bdr _cnt:
long ttl_recv err_cnt:
long ttl retry cnt:
char xfr mode;

char wait mode:
char hdr_spec_data;
b

i~ struct TokenFrame |{
unsigned char da(6]:;
unsigned char sal6]:
unsigned char info[16];

by

struct PktStr |
unsigned char inp[1500];

b :

} struct WhoStruct far *Who:
] struct PktStr far *pPkt;
struct ini_hdr ddh:
struct ini_hdr *parmsdr = &ddh:
struct TokenFrame tkbuf;
struct TokenFrame *ptkbuf = &tkbuf;

int ttlpl, nb, flags, regid, nregid:

int rc, rxf=0x000%, rrxf, Adapters=0;
int rs = 0, icnt = 0;
s parmsdr->len=0x17;
parmsdr->nont=0x00:
parmsdr->non2=0x00;
parmsdr->non3{0}1=0x00;
parmsdr->non3[1)=0x00;
parmsdr->non4 [0]1=0x00:
parmsdr->non4[1]1=0x00;
pvarmsdr->non4{ 21=0x00:
parmsdr->non4{3]=0x00:
parmsdr->non5{0]=0x00;
parmsdr->non5(1}=0x00:
parmsdr->non5{ 2 |=0x00:
parmsdr->non5{3]}=0x00;
parmsdr->non6=0x00;
parmsdr->cdend{0]=0x00;
parmsdr->cdend(1]=0x00:
parmsdr->cdend{ 2]=0x00;
parmsdr->cdend({3]=0x00;
parmsdr->argo = "c:\\3com\\tok603.sys 5,300,0,,\0x0a":
parmsdr->args=getds():
parmsdr->non7=0x00;

rc=getds():
printf("getds Ox%x\n",rc):

rc=cInitParameters(parmsdr);

printf("cInitParameters returns %d\n”,rc);:
rc=cInitAdapters(&Adapters):

printf("cInitAdapters returns %d, Adp=%d\n",rc, Adapters):

rc=cSetl.ookAhead(32):
printf("cSetLookAhead returns %d\n",rc):

rc=cWhoAnT (&Who) ;
] printf{"cWhoAmI returns %d\n”,rcj};

B-20

printt(”addr = %02x %202x %02x", Who->addr{0],

Who->addr([1], Who->addr([2]):
printf (" %02x %02x %02x\n", Who->addr(31,

Who->addr[4), Who->addr([5));
orintf("ver major %02% ver minor %02x\n", Who->ver_major, Who->ver minor::
printf("adapter type %02x\n", Who->type_adapter):
printf("transfer mode %x wait mode %x\n", Who->xfr mode, Who->wait mode);
printf(”ttl recp cnt %d (0x%4x)\n", Who->ttl recp_cnt, Who->ttl_recp cnt);

for (i=0; i<=5; i++)

ptkbuf->dali] = oOxft;
for (1=0; i<=5%: 1++)
ptkbuf->safi) = Who->addr[i}:

rc=cWrRxFilter(rxt):

printf ("cWrRxFilter returns %d\n",rc):
rc=cRdARxFilter{&rrxf):

printf("cRdRxFilter returns %d, filter=%x\n",rc,rrx):

rs = ' '
orintf({"Receiver or Sender ? (r/s)\n"i:
while (((rs = getchar{)i != 'r’) && (rs != 's’)) |

orintf("Receiver or Sender ? (r/s)\n"\:
b
it (rs == ‘r’r) |
while (!'kbhit()) ¢
! rc=cRcvSome(&Pkt
1f {rc > 00

*
printf(" length = %d\n", rci:
for (i=0: i1<=rc; 1i++)

printf (" 22x", Pkt->inpiiii:
printf("\n", rc);
icnt++:
}
}
printf("Total input count %d\n®.icnt):
}
] else |
ttlipl = Oxlc:
nb = 0Oxlc;

tlags = 0x0060;
regid = 0x0001;
nregid = 0x0011l:
for (i=0; 1<10; 1i++)
rc=cXmitl(ttipl, nb, ftlags, regid, ptkbuf, &nregid):
)2

rc=cResetAdapter(}:
printf (YcResetAdapter returns %d\n",rc):

exit (0);

void myRxProcess(Status, PacketSize, RequestlID, PacketHeader)
nt Sta*us, FacketSize, RequestID;
har far #*PacketHeader:

!
/% tprintf(stderr,“Called by ASM - myRxProcess\n Not implement vet\n'"):
i fprintf(stderr,"Status=%d, PacketSize=%d, RequestID=%d\n",Status,PacketSize,

A,

xr

RequestID): */

void myTxProcess(Status, Regues TD)
int Status, RequestID;

\

/* printf("Called by ASi - myTxProcess\n Not imp.ement yet\n™):
printf("Status=%d, RequestlD=%d\n",Status, RequestiID); */

void myExitRevIint()
{

/% printf(*"Called by ASM - myExitRcvIntin Not implement yet\n"): */

vwiKxrltitter proc nedar

push bp
mov bp,sp
push ds

push S
rush 1

title cto3l.asm
l***:\'*************i‘*'k****r*****i**
]File: CTO3L.ASM

/Description: This file contains subroutines which provide a
; C program with an interface to the 3L 1.0 routines.

hhkhkhkkhkrhkRA kAT kAkrhrhhkh ok bk hdhkhrhhkhhhkhakhhk hhkhkhkhhhkhkhhrhhrrhkkrxrhkrtrhhihk

Functions called by C
}UBLIC _getds

RUBLIC _cInitParameters
JUBLIC _cInitadapters
UBLIC _cresetAdapter
PUBLIC _cWhoAmI

‘UBLIC _cRdRxFilter
'UBLIC _cWrRxFilter
PUBLTC _cPutTxData
TUBLIC _cGetRxData
[UBLIC _cSetLookAhead
PUBLIC _etext

.fUBLIC _CcRcvSome
JUBLIC _cXmitl

lNeed to be written in C

xtrn _myExitRcvIint Incar
extrr _myRxProcess :near
xtr . _myTxProcess near

;FU ctions provide by this file
PUBLIC ExitRcvInt
UBLIC RxProcess
JUBLIC TxFrocess

13L functions

xtrn InitParameters rnear
extrn Initidapters rnear
axtrn WhoAmI near
thrn ResetAdapter irea -
xtrn RARxFilter :near
extrn WrRxFilter :near
xXuern GetRxData inear
xtrn SetLookAhead tnear
extrn PutTxData ‘near
}f equ Oah
cr equ 0dh
]print macro strloc ;print string at strloc
loca. strloc
push ax
‘ push cx
y push ds
push dx
mrv dx,seqg strloc
mov ds,dx

P g

kkbdin

|

@kbdchk

Fooe
TEXT
ﬁGROUP
_TEXT

mbATA
DATA

CClu

mov
mov
int
pop
pop
pop
pop
endm

macro
mnov
int
endm

macro
mov

int
endn
GROUP
segment
group
assume

ends

segment
ends

segment

ICODE ends

EATA
is_ds

_etext®

Lectsv

retsav
rif

pklock
klen
Ekerr
kcnt

pkcount

kthd
ktdat

DATA

__DATA
_de

| DATA
| BSS
_be

| BSS
] DATA
_s@
rDATA

segment
dw
db

dd
dw
db

db
dw
dw
dw
dw
db
db

ends

segment
label
ends
segment
label
ends
segment
label
ends

dx,offset strioc

ah,0%h
21h

dx

ds

cx

ax

ah,8
21lh

ah,Obh
21lh

_TEXT, DATA,

byte public
_DATA, _BSS

cs:_TEXT, ds:DGROUP,

word public

woird public

(3

22h dup (0)
5

cr,lf,’'s’

OO OO0

32 dup(0)

1500 dup(0)

word public
byte

word public
byte

word public
byte

;get kbd char in al

;wait for key

;check for Kbd char

;returns al: O-nokey, ff-keyhit

ICODE
'CODE’

ss :DGROUP

'CODE’

'CODE’

;save all vectors so we can cleanup

’'DATA’

’BSS’

'DATA’

_TEXT SEGMENT
ASSUME CS: TEXT, DS:DGROUP, SS:DGROUP

_getds proc near

., mov ax,ds
mov cs:his_ds,ax
ret

_getds endp

- - - S - — —— Y - ———— . - - = ——— " e T W —— T —— T " —— " 0 — = — ——— — - - - — ——————

j_cInitAdapters: This procedure provides the glue between a C
program and the 3L 1.0 InitAdapters function.

~s

Calling Sequence:
int cInitAdapters(&nAdapters)

; Input Parameters:
None

;Output Parameters:
int nAdapters

;Returns:
; The return value of the InitAdapters function

| e e - ———— ——— - T = v M S e A - - - e . = e A e - — e S W M = —— — ———

_cInitAdapters proc near

push bp

nov bp,sp

push si

push di

push ds

mov ax,cs

mnov ds,ax

mov di,offset CODE:RxProcess

call InitAdapters

pop ds
. mov di,word ptr[bp+4]
5 mov word ptr{di],cx

pop di

pop si

pop bp

ret

icInitAdapters endp

B e e - e = - A M S . —— " e S = A — - - i = - - - - - G M Am AR S T e b e - - aa

_clInitParameters: This procedure provides the glue between a C
program and the 3L 1.0 InitAdapters function.

Calling Sequence:
int cInitParameters(Parms)

sInput Parameters: .]
char *Parms - Pointer to a structure with overrides of default

; paraneters.

Output Parameters:
H None

Returns:
; The return value of the InitParameters function

——— ————— o ———— ———— — — —— - —— - —— A S T S R - - A - - - S — —— T —— T ——— — o2

lcInitParameters proc near

push bp

mov bp,sp
push si

push di

push ds

mov bx, [bp+4]
mov ax,ds
mov es,ax
mov ax,cs
mnov ds,ax
call savvecs

call InitParameters

il pop ds

| pop dai
pop si

] pop bp
ret

_cInitParameters endp

;_CResetAdapter: This procedure provides the glue between a C
program and the 3L 1.0 ResetAdapters function.

;Calling Seguence:
] int cResetAdapter()

; Input Parameters:
None

;Output Parameters:
; None

Returns:
H The return value of the ResetAdapter function

- —- —————— —— —— T — T —— —— o — - . " - . - — — " = —— ——— " f ——— - - —— - — - —

icResetAdapter proc near
push bp

mov bp, sp
push 3i

push di

push ds

mov dx,0
mov ax,cs
mov ds,ax

. =26

mov dl,0 ; Ruey Ouyang
call ResetAdapter
call fixvecs

pop ds
pop di
pop si
pop bp
ret

| cResetAdapter endp

b e o e - —— — — ————— . — —— = - S T — — = — —— A " - —— > S P T = e S - —— - -

s

Se ve we w. Se ~a S

_cWhoAml: This procedure provides the glue between a C
program and the 3L 1.0 WhoAmI function.

Calling Sequence:
int cWhoAmI(&WhoPtr)

———

;Input Parameters:
L None

ﬁOutput Parameters:

; struct WhoStruct far *WhoPtr - Far polinter to the WhoAmI structure

sReturns:
H The return value of the WhoAml function

B e - - ———— A —— - ——— o —— - ——— i — - —— " —— T T - — " " . S . ——— - —

| CWhoAml proc near
push bp
mov bp,sp
push si

push di
push ds
] mov dx,0
: mov ax,cs
mov ds,ax

? call WhoAmI

pop ds
| mov si,[bp+4]

mov Word ptr [si],di

mov Word ptr [si+2],es
J pop di

pop si

pop bp

ret

' cWhoAmI endp

@ e e - A - - ——— —— i - - R S . R = - S YR e R S = S G S e e G R G - T e S e

_CRdRxFilter: This procedure provides the glue between a C
program and the 3L 1.0 RdRxFilter function.

w4 v mg e

B-27

F

|

;Calling Sequence:
; int cRdRxFilter (&RxFilter)

; Input Parameters:

,f None
;Output Parameters:
H int RxFilter - The receive :ilter value

tReturns:
; The return value of the RdRxFilter function

']: __

cRARxFilter proc near

: push bp
1 mov bp,sp
push si
push di
push ds
mov ax,cs
mov ds,ax
mov dx, 0
call RdARxFilter
ﬁ pop ds
mov di, [bp+4]
l oV (di],bx
pop di
pop si
l pop bp
ret

_cRdRxFilter endp

~} _CWrRxFilter: This procedure provides the glue between a C
]: program and the 3L 1.0 WrRxFilter function.

Calling Sequence:
int cWrRxFilter(RxFilter)

Input Parameters:
int RxFilter - The new receive filter value

;
[

;Output Parameters:
F None

s Returns:
; The return value of the WrRxFilter function

- - —— — — — — — — — ———— — = > M . N D P R e A e T A S R S e - T S s D D R ES AR R S R G S W e G G - -

_CWrRxFilter proc near

push bp

] mov bp,sp
push ds
push si

l push di

nov ax,cs
mov ds,ax
mov dx,0
nov ax, [bp+4]

call WrRxFilter

pop di
pop si
pop ds
pop bp
ret

_CWrRxFilter endp

- — —— —— ————————— T — Y —— _— —— 1 —— ——— — —— T ——————— T ——— —————————_——— — —————— —————— ——

;_cSetLookAhead: This procedure provides the glue between a C
program and the 3L 1.0 SetLookAhead function.

;Calling Sequence:
int cSetlLookAhead(NumBytes)

: Input Parameters:
; int NumBytes - The nnumber of bytes of look ahead data

.o}
P

jOutput Parameters:
H None

Returns:
: The return value of the SetLoockAhead function

cSetLookAhead proc near
push bp

] mov bp,sp
push si -

push di

push ds

mov ax,cs
mov ds,ax
mov dx,0

mov ax, [bp+4]

call SetLookAhead

pop ds
pop di
pop si
pop bp
ret

cSetLookaAhead endp

| _cPutTxData: This procedure provides the glue between a C
program and the 3L 1.0 PutTxData function.

. o~

Calling Sequence:

R,

B-29

———nt

H int cPutTxData({TotalPacketLen, NumBytes, Flags, RequestlID,
F PacketAddr, &NewRequestID)

Input Parameters:
int TotalPacketlLen - The total packet length (first call only)
int NumBytes - The nnumber of bytes to transfer this call
int Flags -~ The DL flags
int RequestID - Used if not the first call
char far * PacketAddr - A far pointer to the packet

Output Parameters:
int NewRequestID - Returned after first call

S, ~uw~.0~!‘j~

; Returns:
; The return value of the PutTxData function

cPutTxDAta proc near
push bp
mov bp,sp
push si

push di
push ds
mov ax,ds

o mov es,ax
mov bx, [bp+4]
mov cx, [bp+6]

mov dl,byte ptr[bp+8]
mov dh,byte ptr[bp+10]

mov si,[bp+12]
; mov di,offset CODE:TxProcess
nov di,offffh ; no TxProcess

call PutTxData

- pop ds

xchg dh,dl

XOor dh,dh

mov di, [bp+l6]

mov [dij,dx
pop di

pop si

pop bp

ret

_cPutTxData endp

J' -——--—-—-————-—-——————-———---—-———-—-v-———-—-—————‘—-——————-—-—-—————----——————

t_cGetRxData: This procedure provides the glue between a C
; program and the 3L 1.0 GetRxData function.

;Calling Segquence:
t int cGetRxData(&NumBytes, Flags, RequestID, PacketAddr)

; Input Parameters: _
F int NumBytes - The nnumber of bytes to transfer this call

B-10

; int Flags - The DL flags
; int RequestID - The request identifier
E char far * PacketAddr - A far pointer to the packet to copy the data
;Output Parameters:
int NumBytes - The actual number of bytes transferred

;Returns:
F The return value of the GetRxData function

_cGetRxData proc near
push bp
mov bp,sp
push si

] push di
push ds
mov di, [bp+4]
mov cxX,ss:[di]

mov dl,byte ptr{bp+6]
mov dh,byte ptr{bp+8]

mov di, [bp+10]

mov es,[bp+12]

call GetRxData
h pop ds

mov di, [bp+4]

mov ss:{di],cx

pop di

pop si

pop bp

ret

_cGetRxData endp

P e e o - ——— " = —— - ———— — ——— — —— ——— — — ——— o ————— . — — —— — — — —————————

ertstd

T8 we WE W N8 We N§ N8 W8 NG ws we wa 0w

—
~e wa we

TxProcess: This procedure is the protocol-side routine which is called
when a packet has finished transmitting (see _cInitAdapters). It
provides the glue between the 3L 1.0 routines and C routine called
myTxProcess.

myTxProcess Calling Sequence:
void myTxFrocess(Status, RequestID)

myTxProcess Input Parameters:
int Status - Receive status
int RequestID - The request identifier

myTxProcess Returns:
Nothing

! ; ——

TxProcess proc near

: push bp
i push si
i push di

push ds

push es

B-31

push ax

nov ax,cs:his_ds
mov ds,ax
-~ mov es,ax
pop ax
xXor cxX,CX
mnov cl,dh

Xor dh,dh

push cX
push ax

call _myTxProcess
] add sp,4

pop es

pop ds

pop di

pop si

pop bp

ret

I'xProcess endp

O F . ————— ———— A ———— — — A —— — —— T ——_— " ——— ——— " —— - —— —————— — ——— ——— . —— - — — i ——— - ————
o
Rt

;ExitRcvInt: This procedure is the protocol-side routine which is called
when the 3L has completed a receive interrupt. It provides
1 the glue between the 3L 1.0 routines and C routine called

; myExitRcvInt.

tmyExitRchnt Calling Sequence:
void myExitRecvInt()

-
’

myExitRcvInt Input Parameters:
None

-
L4

ymyExitRcvInt Returns:
E Nothing

P o - — — N —— —— " = S . Y - — S P M . o —— . S M e S T —— — —_— — —— ——— ——— ——— — " —— - ————

XxitRcviInt proc near

T

push bp
; push ds

push es
; push si
H push dai
v
; push ax
; mov ax,cs:his_ds
; mov ds,ax
; mov es,ax
; pop ax
: call _myExitRcvInt
; pop di
H pop si
; pop es

B -32

; pop ds
" pop bp
iret
rxitRecvInt endp

- ———— i ———— . = ——— - ——— —— " - v ———— T —— ——————————— o~ ——_ — > o o ——————

;RxProcess: This procedure is the protocol-side routine which is called

when a packet has been received (see _cInitAdapters). It provides
the glue between the 3L 1.0 routines and C routine called

; nyRxProcess.

myRxProcess Calling Sequence:
; void myRxProcess(Status, PacketSize, RequestID, PacketHeader)
lmnyProcess Input Parameters:
int Status - Receive status
; int PacketSize - Size of the received packet
' int RequestID - The request identifier
l char far *PacketHeader - Addrass of the virtual packet header
:myRxProcess Returns:
I Nothing

P o A e ————— —— —— ———_—_——— —_—— . — — ————————— ———————- —————_————— - —————an a— -

’
ixProcess proc near

jomment #
push bx
push cX

‘ push dx
push si

. push di

‘ push bp

: push ds
push es
pushf
push es
push di
push ax
mov ax,cs:his_ds
nov ds,ax
mov es,ax
pop ax

i

| xor bx , bx

' mov bl,dh

xor dh,dh

push bx
push cXx
push ax

call _myRxProcess
add sp,10

popt
pop es
pop ds

pop bp
pop di
pop si
pop dx
. pop cx
pop bx
ret
#
push bx
push CcX
test cs:pklock,0ffh
jz getp
dontget:
inc cs:pkcount
mov cx,0 ;2ero length (just discard)
Jmp goget
getp:
; At this point we could check es:di packet header data
; to make some decision on packet disposition
; lock our buffer and get packet data into it
. mov cs:pklock,0ffh ;lock buff
L mov cs:pkerr,0
oget:
nov ax,CODE
mov es,ax
mov di,offset cs:pkthd ;buffer
or dl,40h ;release buffer
call GetRxData
jcxz nolen
nov Ccs:pkerr,ax
mov cs:pklen,cx
rolen:
pop cX
pop bx
- ret
LxProcess endp
b o o e e e e e e e e e
£ _cXmitl proc near
transmit one packet
cXmitl proc near
push bp

nov bp,sp
push si

push di
push ds
mov ax,ds
mov es,ax

;setup for PutTxData

mov bx, [bp+4] ;set lengths
nov cx,[bp+6]
mov dl, byte ptr{bp+8]

mee dh, byte ptr[bp+10]
mov si,[bpt+12]

mov di,offffh ;no TxProcess
call PutTxData

pop ds

xchg dh,dl

xXor dh,dh

mov di, [bp+16]

mov [di],dx

pop di

pop si

pop bp

ret

_cXmitl endp

_CRcvSome proc near
following code to dump received packets for a fixed time
CRcvSome proc near
push bp
mov bp,sp
push si

push di
push ds
mov ax,cs
mov ds,ax
~hkpk:
‘ test cs:pklock,0ffh ;got a pkt?
jnz lstpkt
mov cs:pklen, 0 ; No pkt, move 0 to pklen
‘ jmp wedone
.stpkt:
test cs:pkerr,0ffffh ;any error
jz dmpk
jmp wedone
dmpk:
cnp cs:pklen,0
jnz pkok
jmp wedone
pkok:
cmp cs:pklen, 256
jle wedone
mov cs:pklen, 256 ;limit dump to 1st 256 bytes
~edone:
mov cs:pklock, 0
inc cs:pkcnt
mov ax,cs
pop ds
mov si,[bp+4]
mov word ptr [(si), offset cs:pkthd
mov word ptr [si+2], ax
mov ax,cs:pklen
pop di
pop si

L

MOL=DS~T S MO 1317 1D IET JIT-ES2-5@5% RI4Z ROL

pop bp
ret.

_cRcvSome endp

avvecs proc near
push ds
push es
' push si
push di
I push cx
mov ax,ds
mov as,ax
' xor ax ax
nov ds ,ax
mov Ccx,22h*2 vectors U - 21h, 2 wds per
' nov di,offset CODE:vectsv
xor si,si
cld
cli
I rep movsw ;save ‘en all
sti
' pop cx
pop di
pop si
pop es
| e
ret
ravvecs endp -
‘iXvecs proc near
push es
push si
push di
push cx i
push ax T
xor ax,ax
nov es,ax
nov CX,22h*2 ;vectors 0 - 21h, 2 wds per
mov si,0ffset CODE:vectsv
xor di,di
cld
cli
rep nmovsw ;restore ‘2m all
sti
pop ax
pop cX
pop di
pop si
pop es
ret
ixvecs endp
[TEXT erds
end

EEEEEEEESE SRS SRR SRR LR R EEE SRR EE R R R R R R R R R R R I I e
?ogdisk.c

Lnis program disgplavs the airplane controled bv the SiliconGraphics or
the simret.

] simnet: Link Level Raw Ethernet Packets / Synchronous Non-blo. xing

SiliconGraphics: Synchronous-blocking UDP/IP or
(disk file)

I EEER RS ESR SRS SRR R SRRt i 2 s s R R SRR R REREERRRER R R R R R XN X I
kinclude <sys/extypes.h>

#include <stdio.h>

¥include <ctype.h>

¥ include <math.h>»

#include <sys/exerrno.h>
include <sys, ocket.h>
{include <netinet/in.h>

#include <fcentl.h>

include <signatl.h»

:nclude <errno.h>

nclude -svs/types.h>»

nclude <sys/stat.h>

nclude <-ys/exosopt.h>

include <svs/exos.h>»

‘nclude <ex _ioctl.h>

‘nclude <sys/soioctl.h>

nciude <svys/dcbh.h>

‘nciude "..\simnet.h\simnet2.h"

include "..\flight.h\flight.h®

e e e

T W o#TATY™ tat wow WoH-u

truct sockaddr link recv socket { AF_ETYPEFILTER) ;
ruct sockaddr_link send _socket { AF _ETYPEFILTER }:
ruct sockaddr_in recv socket sg = { AF_INET):

ruct sockaddr in send socket_sa { AF_INET }:

1

Iy

1

‘
Frort oot ot

ﬂdefine FILEOFLAG (O RDONLY i O_BINARY)
P?(iefl'ne FILEPMODE 10)

j

#define P1 3.14159

|

bxtern int errno:

extern int break enabled:

pxtern int abhort_op;

int disktd - -1 /% isk file */
n netfd = 1; /* simnet file */
Fnt netfdsg = -1 /* udp/ip file */
int cimelimit = 30,

char *inputfile:

Lhar SENDIT:

char buf{1024]:

Pnt hrea% handler ()

mainh (arac, aragv)
fFhar **arav:
!

y g

e

e

int an, i, j, pdukind, netcnt:

signal (SIGINT, break handler);
break_enabled = 1;
inputfile = argv([1):

sginitin():
netinit();

/* Capture a simnet packet first, so we don’t have to fill all ot the data
field */
forintf(stderr, "wait for simnet\n"):
while(1l) !
/% netcnt=netread(inbuf); */
netcnt=netread():
datalength.p_datalength= ntohs (ether_ buf.simnet_data.e datalenagth):

netcnt=datalength.i_datalength.length + HEADER SIZE;
memcoyv (&pdu_buf, ðer_buf.simnet data, netcnt - HEADER _SIZE);

pdukind = ntoh simnet({):
if (vpdukind == vehicleAppearancePDUKind) |
SENDIT = * 7
1t (ether_but.e shost [5] == TANKA)
SENDIT = "A':
it (ether butf.e_shost [5] == TANKB)

SENDIT = 'B’:

CUSENDIT == ‘A7) |1 (SENDIT == ‘B’ break:

e
-t

H

forintft(stderr, "Got a vehicle appearance packet from tank %ci\n", SENDIT):
pdu_ _buf . VAPDU.VADATA.hdr.vehiclelID = MYTANKID;

pdu. buf .VAPDU.VADATA.appearance.vehKindMask = AlQ;

mencpy (ether buf.e shost, my_addr, sizeof(my addr)):;

while (1)
netcnt = sgreadin{);
if [(netcnt <= 0) break;
memcpy({ &plane, buf, netcnti:;
ntoh flight():

pdu_buf.VAPDU.VADATA. location([0] =

ATRPORTX + (({plane.x + ADJUSTX)/F2M):
pdu_buf.VAPDU.VADATA.location[l] =

ATRPORT? - ((plane.z + ADJUSTZ)/F2M);
pdu_buf .VAPDU.VADATA.location[”] = ATRPORTY + (plane.y/F2M);
calrotation():
hton simnet();
memcpy (ðer but.simnet data, &pdu_but, netcnt - HEADER_SIZFE);

netwrite(i;

!
fprintf (stderr, "Fnd of input sg packet\n"j:

close(disktd):
sgfiniin(\:
netfinit:

rrexitf{errstrinal
[har *errstrinag:

!

if (errno) experror(errstring);

else fprintf(stderr, "%s\nusage: dogdisk filename\n", errstring):
close(diskfd);

soclose(netfdsg);

netfini();

exit(1):;

reak_handler () /* break handler ... control-break or control-c */
static Iint break count = Q:

if (+4++break count == 1) |
/* first time, Jjust try to stop current network operation */
abort_op = 1:
signal (STGINT, break handler): /* reset trap */
return:
}
else |
/* second time, trv to clean up, then quit #*/
errexiti"user abort"):;

Zoinfoloptoe)
truct exosopt *ontyop:
;
| /* note that this routine will not return valid results
f * 1f used with a pre-3.3 driver, which interpreted the
' * board memcry address as absolute, rather than relative
* to the heainning of the data seament

I */‘
lena optaadress - 0: /* location of options */
int id:

[N,

it ({id = brdoven(g, 11) < Q) |
experror({"brdopen”);
] returni{-=11;

it (brdioctiiid, BRDADDR, &optaddress) < 0) {
experror ("brdioctl(,BRDADDR,...)}"):
‘ return(-11:

it (brdread:id, optp, sizeof(struct exosopt)) < 0) ¢
| experror("brdread");
j return{-id:
)
. brdclosefid);
return 0;

tinc]ude “_ _\simnet.h\simnet.ccd"
include "..\flight.h\flight.ccd"

This subroutine computes the rotation matrix (3x3) tor the SIMNET PDU’s */
/* given the pitch, roll and vaw of the vehicle. */

cilrotation()

B-139

h. | e

=

int 1,3,k=0:

float R,P,Y;

float RC,RS,PC,PS,YC,YS:
float A [3]1 [3]):

float 2z [3] [3]:

float x (3] [3]:

float v [3] [3]):

/% In Silicon Graphics DogFight: Roll=Twist; Pitch=Elevation;

R=(plane.twist/10*PI)/180;
P=~(plane.elevation/10*PI) /180
Y=-{plane.azimuth/10*P1)/180;

RC=cos(R):
RS=sin(R}:

PC=cos(P)
PS=sin(P)
YC=cos(Y)
YS=sin{Y):

~e ve e

Zz{01 [0}=YC:
z{0] [1]=-YS:
Z2{01 [2]1=0:

z{1] [0]1=YS:
z{1] (11=YC:

z{11 [21=0;
zf21 {01=0:
zi2y 111=0;
z{iz1 121-1:

X(0] [01=1;
{Ov [1i=0:
(0] [21=0;
xf11 [01=0:
x[1] [11=PC:
x{1} [2]=-P5;
x[2] [01=0;

x{21] [1]1=PS:

x{2) [(21=PC;

vi01l {0}=RC;
vio] (1]=0;
v{01] [2)=RS;
y{1l] [0]1=0
v(1] (1]=1;
y[1] [2]=0;:
v(2) (0]=-RS;
y(2] [1]=0;
y{2] [2]=RC;

for (1=0; i<=2; i++) !
for (j=0; J<=2; G++) |
A [1]07]1=0;
for (K=0; K«<=2: K++)
ALY += »[i){k] * y[k][3]:

B-40

Yaw=Azimith */

i
|

P

By

s

for (i=0; i<=2; i++) |
for (Jj=0; j<=2; JF++){
pdu_buf .VAPDU.VADATA.rotation[1}{j1=0;
for (k=0: k<=2; k++)

pdu_buf .VAPDU.VADATA.rotation[i][j] += A[i][k] * z[k]}[]]:

R-41

F g de kg kdkdedkkdkdokdhdekk ok ok dokkkokk ko ok kk gk k Rk k kg gk ok Kk ok kok gk d ok gk g ok dodk de ok ok bk ok e g ke ok
light.h

~

5

This file is tie header file for the airpalne running on
the SiliconGraphics

ek kkkkkhhhkhkhhkhkhhkhdrhhkhkhkhhhkhdhkhhkhhkhhrhorhhkhhhrhhdbhkhhbhkhkhhkdhhkhhkhkhhhkhdhhkhhkkhhdrk /

define NAME_LENGTH 15
ke

define MYPLANEID 16

s
/

Hef ine ADJUSTX =~350

#define ADJUSTZ 2050

#define AIRPORTX 40000.0
efine AIRPORTY 220.0

define ATRPORTZ 30030.0

J*

Fefine F2M 3.281

T

F 3

ddefine F2M 5.0

&ruct plane |
i

long planeid:

char version: /* flight version */
char cmd: /* tvpe of packet */
short type: /* plane tvpe */
short alive: /* alive x/

char mvname[NAME _LENGTH+1]:

unsianed short status:

unsianed short won: /* for msgs these 2 shorts */
unsiagned short lost: /* hold the _.ane id */

float x: /* plane position */

float v:

float z;

sheort azimuth;
short elevation:
short twist:

short mstatus: /* missile data */
float mx;

float my:

flocat mz;

float last_mx:

float last_my:

float last _mz; - -

long kill:

float tps:

int airspeed;

int thrust;

short wheels: /* wheel position */
short elevator: /* elevator position */

char mtype;

-
’

:truct plane plane:
hort port=0x140a: Bt2 * port address tor udp/ip connection */

/**
flight.ccd

This file contains the ¢ code to handle the airplane flying on the SG

\'***/

/* Initialize a synchronous/blocking udp/ip connection for input */
ngnitin()

/* Check that the driver is loaded, and get our own ethernet MAC
address from the EXOS board */
‘ if (!loaded()) errexit("driver NOT loaded");
if (ipinfo(&opt) < 0) errexit("could not get own ethernet MAC address™):
memcpy{my_addr, opt.xo_eaddr, sizeof(my_addr));

/* Display my address */

forintf{stderr, "my addr = %02x-%02x-%02x~%02%-%02x-%02x\n",
my_addr{0], my_addr([1}, my_addr{2],
my_addr[3}, my_addr{4]1, my_addr{5]);

/* Open input cdisk file */

| diskfd = open(inputfile, FILEOFLAG, FILEPMODE):

, if (diskfd < 0) errexit("cannot open diskfile"):
fprintf(stderr, "disk file fd = %d\n", diskfd)};

/* UDP/IP specification */
send_socket_sg.sin_port
send socket _sg.sin_addr.s_addr = 0x00000000;
recv_socket_sg.sin_port htons(port):;

recv_socket _sg.sin_addr.s_addr = Oxffffffff;

htons(port):

homoh

/* MaKe a udp socket call */
if ({(netfdsg = socket(SOCK_DGRAM, (struct sockproto #*) 0,
&send_socket_sg, 0}) < 0) |
F forintf(stderr, "ERRNO %d\n", errno):;
{ errexit{"socket");
)
fporintf(stderr, "sg socket fd = %d\n", netfdsqg):
returnf(0);

Pp—

/* Read synchronous/blocking udp/ip packat */
sgreadinf()
{

int cnt;

/* if ({(cnt = soreceive(netfdsg, &recv_socket_sg, but, sizeof(buf))) < 0)
errexit("soreceive");
i fprintf(stderr, "read %d bytes from sg\n", cnt); */
i if ((cnpt = read(diskfd, buf, 100)) < 0)
errexit(¥read"};
| /* fprintf(stderr, "read %d bytes from disk\n", cnt); */
| return(cnt);

P* Close connection */
s5gfiniin()

!
({ soclose(netfdsqg):
B-43

k

)

} This subroutine is here for documentation, it is on simnet.ccd */
/*
syap4(char *ptr)

Network order to host order transform */

oh_flight ()

int i, Jj7

union {
char *tmpc:
float *tmpf:

} tmp;

union { :
char *tmpc;
short *tmps;

} tmps;

tmp.tmpf = &plane.x:
swap4 (tmp.tmpc) :
tmp.tmpf = &plane.y:
swap4({tmp.tmpc);
tmp.tmpf = &plane.z;
swap4 (tmp.tmpc) ;

tmps.tmps = &plane.azimuth;
swap2{tmps.tmpc);
tmps.tmps = &plane.elevation;

swap2(tmps.tmpc):
tmps.tmps = &plane.twist;
swap2(tmps.tmpc)

Heost order to network order transform */

nton_flight ()

int i, 171:
union {
char *tmpc:
float *tmpf;
yotmo:
union ¢
char *tmpc;
short *tmps;
} tmps:

tmp.tmpf = &plane.x:
swap4(tmp.tmpc);

tmp.tmpf = &plane.y:

swap4 (tmp.tmpc);

tmp.tmpf = &plane.z:
swap4(tmp.tmpc);

tmps.tmps = &plane.azimuth;
swap2(tmps.tmpc);

tmps.tmps = &plane.elevation;
swap2(tmps.tmpc);

tmps.tmps = &plane.twist:
swap2(tmps.tmpc);

— e e

—— e e

;
1
)

J

[

char tmp:

tmp =
*ptr =
*(ptr+3) =
tmp =
*(ptr+1)
*(ptr+2) =

*ptr:

~

* This subroutine is here for documentation,

*
wap2{char *ptr)

char tmp:

tmp = *ptr;
*ptr = *(ptr+l1):
*(ptr+1) = tmp:

/

isplav plane()

forintf(stderr,
forintf(stderr,
torintfistderr,

fporinttistderr,
fprintf(stderr,

forintf(stderr,
forintf (stderr,

fprintf(stderr,
forintf(stderr,

forintf(stderr,

*(ptr+3);
tmp;
*(ptr+l);

= *(ptr+2):;
tmp;

it is on simnet.ccd */

"plane id %1d\n", plane.planeid):
"version %c\t cmd %c\t tvoe 3d\t alive %d\t myname %s\n",
plane.version, plane.cmd,. plane.type, plane.alive,
plane.myname);

"status %ud\t won %ud\t lost %ud\n",plane.x.plane.v,
plane.z);

" %f\t v %f\t z %f\n".,plane.x,plane.vy,plane.z):
"azimuth %d\t elevation %d\t twist %d\n",plane.azimuth,
vlane.elevation.plane.twist):

"mstatus %d\t mx %f\t my %f\t mz %f\n",plane.mstatus,.
nlane.my,plane.mv blane.mz):

“lasc_mx zf\t last_my %f\t last_mz %f\n",
plane.last_my,plane.last_mz}:

"kill %id\t tps %f\n", plane.kill, plane.tps):

"air speed %d\t thrust %d\n",plane.airspeed,
plane.thrust):

"wheels %d\t elevator %d\t mtype %c\n",plane.wheels,
plane.elevator, plane.mtype):

plane.last mx,

B-45

P
|

|

/***
simnet2.h

SIMNET DATA STRUCTURE DECLARATTONS

1
**/

#define TANKA 0x68 /* 02-cf-1f-30-27-68 */
#define TANKB Oxff95 /% C2-cf-1f-30-27-95 */
#define MCC 0x09 /* 02-Cf-1f-30-28-09 */
#define ANZR Ox14 /* 08-00-09-00-ba-14 */

typedef struct |
unsigned version

: /* version of protocol */
unsigned length :

4;

12; /* length of PDU in octets */

8; /* protocol PDU belongs to */

8 /* type of PDU within protocol #*/

unsigned protocol
unsigned kind
} PDUHeader;

/* version field */
#define protocolVersionFeb87 0 /* the Feb. 1987 version of the protocols */
#define protocolVersionNov87 1 /* the Nov. 1987 version of the protocols */

/* protocol field */

#define protocolNone 0 /* no protocol —-- PDU used for padding */
~_#define protocolMgmt 1 /* the Network Management Protocol */
w#define protocolSim 2 /* the Simulation Protocol */

#define protocolData 3 /* the Data Collection Protocol */

#define protocolXfer 4 /* the File Transfer Protocol */

define protocolDiag 5 /* the Diagncsis Protocol */

/* kind field */

#define activatePDUKind 1 /* Activate PDU */

define activatingPDUKind 2 /* Activating PDU */

define deactivatePDUKind 3 /* Deactivate PDU */

#define vehicleAppearancePDUKind 4 /* Vehicle Appearance PDU */
* #define UNUSED 5 /* Unused PDU */

Kdefine vehicleImpactPDUKind 6 /* Vehicle Impact PDU */

#define groundImpactPDUKind 7 /* Ground Impact PDU */

define indirectFirePDUKind 8 /* Indirect Fire PDU */

pdefine serviceRequestPDUKind 9 /* Service Request PDU */

#define resupplyOfferPDUKind 10 /* Resupply Offer PDU */

#define resupplyReceivedPDUKind 11 /* Resupply Received PDU */

define repairPDUKind 12 /* Repalr PDU */
define repairedPDUKind 13 /* Repaired PDU */

#define collisionPDUKind 14 /* Collision PDU */

fdefine firePDUKind 15 /* Fire PDU */

ﬁdefine radiatePDUKind 16 /* Radiate PDU */

#define resupplyCancelPDUKind 17 /* ResupplyCancel PDU */

k* Vehicle Type Identifier Field */
define vehMainBattleTank

#define vehPersonnelCarrier
define vehCommandPost
define vehAmmunitionTruck
#define vehFuelTruck
gdefine vehSupplyTruck

/* M1 or T72 main battle tank */
/% M2, M3 cr BMP */

/* M577 Command Pcst */

/* M977 Ammo Truck */

/* M978 Fuel Truck */

/* M35-A2 Truck */

/* M106 Carrier */

/* M109 Howitzer */

/* M88 Recovery */

0 /* Fire Support */

define vehMortatCarrier
define vehSPHowitzer
Fdefjne vehRecoveryVehicle

= O ONOU D WN -

define vehFISTVehicle
BR-46h

‘* Appearance Field Descpritors */

typedef struct /!

PDUHeader pduHdr; /* version, length, protocol, PDUkind */
unsigned char exerciselD; /* exercise identifier */

unsigned char padding;

unsigned short vehiclelID; /* vehicle identifier */

SimPDUHeader;

tvpedef struct |

unsigned char role; /* role of vehicle: ammo truck,
fuel truck, etc */
l unsigned char batallion; /* batallion (task force) vehicle belongs
to */
unsigned char company; /* company (team) vehicle belongs to */
unsigned char bumner; /* bumper number within company */

VenicleRole:
/* role field */
define roleSimulator 0] /* a vehicle operated by a full crew,
simulated by a crewed vehicle
simulator */

#define roleOPFOR 1 /* a vehicle simulated by a Semi-automated

ot Forces system */

ldefine roleGunneryTarget 2 /* a gunnery target, such as that simulated
by an MCC system */

fdefine roleAmmoTruck 3 /* an ammunition truck, such as that
simulated by an MCC system */

#define roleFuelTruck 4 /* a fuel truck. such as that simulated by
an MCC system */

define roleMaintTeam 5 /* a maintenance team , such as that
simulated by an MCC system */

#define roles2 6 /* a batallion S2’'s vehicle, such as that
simulated by an MCC system as part of a
tactical operations center (TOC) */

#detine roleS3 7 /* a batallion S3’s vehicle, such as that
f simulated by an MCC system as part of a
| TOC */

ddefine roleFSFE 8 /* a batallion fire support officer’s

vehicle, such as those simulated by an

MCC system as part of a TOC */

idefine roleTACP 9 /* a batallion tactical air control party
vehicle, such as those simulated bv an
MCC system #s part of a TOC */

define roleAdminl.ogCenter 10 /* a batallion admin/log center vehicle,
such as that simulated by an MCC
system */ .

define roleOther 99 /* any other vehicle not in one of the above
categories */

* company field */

define assignedBattalion 1 /* the vehicle is assigned to no unit in
particular within the batallion */

define assignedScoutPlt 2 /* the vehicle belongs to the batallion’s
scout platoon */

#define assignedTACP 3 /* the vehicle belongs to the batallion’'s

tactical air control party */

|

B~47

tvrpedef struct |

SimPDUHeader hdr:

/* Common to all
VehicleRole role
unsigned char ali
unsigned char veh
/* unsigned short
/* struct (
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
} appearance; */
struct ¢
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

/* include ID of described number =*/

vehicles */

H /*

gnment; /* offense,

icleClass; /* class of vehicle */
type of vehicie and appearance */

appearance; /*

7ehKindMask : 6
unil
vehDestroved
vehSmokePlume :
vehFlaming :
vehDustCloudMask
un?2 :
vehTOWLauncherUp
vehEngineSmoke
un3i

20 se vo

e ve N

vehSmokePlume
vehFlaming

vehDustCloudMask
unz2 :
vehTOWLauncherUp
vehEngineSmoke :
un3 :
vehKindMask : 6:

R e L i

—

~s ve

[e]

e ~e

XYY

N
e

—
~e

friend,

include ID of described number */
defense,

or foe */

unsigned unl : 1

unsigned vehDestroyved -
} appearance:
float rotation [3
float location [3
short grid [21]; /*
unsigned short engineSpeed; /*
/* unsigned short padding; */
unsigned short sequence; S*

1031 /* vehicle rotation */

]: /* exact vehicle location */
approximate vehicle location */
engine speed, in RPM */

sequence # for vehicleAppearancePDU */

/* Depending on vehicle class */
union ¢

/* If a simple moving vehicle, without turret ... */
struct |
float velocity

} simple;

[31: /* velocity (m/sec/15) */

/* If a tank */
struct |
float velocity {3]: /* velocity (m/sec/15) */
unsigned shocrt turretAzimuth;
/* turret/hull orinntation */
unsigned short gunElevation: /* gun/turret elevation */

} tank;

)} u:
VehicleAppearancePDU;

/* alignment field */
#define alignedFoe 0 /* the vehicle appears unfriendly to all
, participants */

B-43

#define alignedOffense 1 /* the vehicle is on the offense team */
ldefine alignedDefense 2 /* the vehicle is on the defense team */
define alignedFriend 3 /* the vehicle appears friendlv to all

participants */

* yvehicle class field */

+define vehicleClassStatic 1 /* the vehicle is always statiocnary when
visible, and it has no independently
movable parts */

define vehicleClassSimple 2 /* the vehicle can move, but is has no
independently movable parts */
“define vehicleClassTank 3 /* the vehicle can move, and it has a turret

and a gun barrel */

tvpedef struct ¢

1 unsigned char ammunition: /* tvpe of ammunition fired */
f unsigned char fuze; /* type of fuze used */
unsigned char quantity: /* number of rounds in burst */
i unsigned char rate; /* rate of fire, rounds per second */

BurstDescriptor;

1* ammunition field */

efine ammoHEi25 1 /* 25 mm high exposive incendiary shell */
sdefine ammoHEAT105 2 /* 105 mm high exposive anti-tank shell =x/
gpefine ammoAPDS25 3 /% 25 mm armor piercinag discarding sabot
a5 shell =*x/
define ammoAPDS105 4 /* 105 mm armor piercing discarding sabot
shell */
efine ammoTP25% 5 /* 25 mm target practice shell */
Eefine ammoBombh500 6 /* 500 lb. bomb */
#define ammoHE107 7 /* 107 mm (4.2in.) high exposive mortar
shell */
Fefine ammoHE155 8 /* 155 mm high exposive howitzer shell */
+define ammoMissileTOW 9 /* TOW anti-tank missile */
/* fuze field */
'Eefine fuzePointDetonating 1 /* point detonating fuze */
efine fuzeProximity 2 /* proximity fuze */

‘'woedef struct {
F unsigned char targetType:2; /* what 1s known about the target */

unsigned : 14;
unsigned short vehiclelID; /* ID of target vehicle, if known */

TargetDescriptor;

/* targetType field */

Eefine targetlUnknown O /* the target vehicle is not known */
efine targetNotVehicle 1 /* the target i3 known, but it is not a
vehicle */
“define targetvVehicle 2 /* the target is known and it is not a
r vehicle */
/* x/
efine MYTANKID 16
.define MAXBUF 8192
#define HEADER_SIZE 14 /* ethernet header size including our header */
kruct ether { /* first three fields required for any link level packet */
char e_dhost[6]: /% 00~05 ethernet destination */
char e shost[6]; /* 06~11 ethernet source */
‘ short e_tvpe: /* 12-13 ethernet packet tvpe */
B-49

Jdnion ¢

tvpedef

«y PDU

j

#def ine

* char

* char

char

=truct
efine

Jddet ine

#define

refine
DU
struct
]

struct {
cshort e_datalength;
char
} simnet_data;

datalength;

/* 14-15
e_data(1512-HEADER_SIZE];

user data lenagth */

/* 16-1512 data, .ax size is

struct |

unsigned length :12;

';msigned version :4;
} 1_datalength:
short p datalength;
union |
struct {

char DATAONLY [1512 - HEADFR _SIZE}:
} DATAONLYPDU:
struct /|

PDUHeader ANYHDR:

char data (1512 - HI2ADER _SIWE 47
}y ANYPDU:
struct |{

VehicleAppearancePDU VADATA:
Y VAPDU:
MAXPKTSIZE 1514 /* total size of largest pos . Hle packet */
send _addrie]: 7% our ethernet MAC adw.ress =/
recv_addrie6l: /* his ethernet MAC address */
mv_addr({61]: /* m’ ethernet MAC address */
exasopt opt: /* EX0S board options include own address */
ETYPE htons({0x5208" /* arbitrary unused ethernet tvpe */

I
12

HEL.TCOPTER11
HELICOPTERI1 2
Al10 13
pdu_buf;
ether ether but:

B=50

51z

*/

222 2R AR SR RS S SRS ER LSS SRR S SRR X R S R R R R REEE RS EEEREE R FE TR R I I s
simnet.ccd

This file contains the ¢ code for the simnet M1 tank simulator.

IR R SRR REEERERREEERERRRRRS SRR SRS Ris s s AR SRR R R RS ERE R E T N

/* Tnitialize the synchronous/non~blocking link-level socket connection */
etinit()

int rc, on=1;

/% Check that the driver i1s loaded, and g=t our own etherret MAC
address from the EX0S board */
if (!loaded()) errexit{¥driver NOT locaded");
‘ if (ipinfol{&opt) < 0) errexit("could not get own ethernet MAC address”):
memcpyv(my_addr, ovt.xo_eaddr, sizeot{my_addr)):

| /* Displav my address *x/
| forintf(stderr, "my adar = 202%x-%02x-%(2x-%02%x~-%02x-%02x\n",
my _ddrl0), my addr({1], my_addr([2
myv_addr{ 3], my_addr{4}, myv_addr{5

1
!

! /* Initialize the simnet receiver/sender socket tvpe */
recv_socket.sl tvpesi0] = ETYPE:

oy
tote

/* Make a link level socket call *v
1f i (netfd=sccket: S30CK FTH, !{struct sockproto *)C, &recv_socket, 0)) <« 0) |
if (errno == EACCES!
errexit ("link-level access must be enabled with -1 option on notlon
else errexit:"cannot create socket");
\

forintfistderr, "socket fd = stfdh

/* Synchreonous ‘non plockina mod

soioctl(nettd, STCUCSTINGER, &tir :
rc = soioctlinettd FIONBIO, &oni:
ir ({rc < O3 !
experror ("soloctli’...FIONBIO, &on)"):
returnfi-1":

}
returni 04

'* Read synchronous/nor biockina mode packet */
(* netread (struct ether but) */
etread ()

int cnt;

cnt = < recei e(retfd, (struct sockaddr *)0, ðer buf, MAXPKTSIZE):
if {{(cnt < 0) && f(errno == EWOULDBIOCK))
H /* No network data */

else
if (ent - 0) experror("soreceive read error%); /* Error condition */

retu n (cnti;

* Write synchronous/non blockinag mode packet */
> retwrite (struct ether *hat 1 */

1 -

: R=-"1

y g

|

netwrite ()
) int cnt, netcnt:

- datalength.p_datalenagth = ntohs (ether_buf.simnet_data.e_datalength):
cnt = datalength.i_datalength.length:
netcnt = sosend{netfd, (struct sockaddr *)0, ðer buf,cnt + HEADER SIZE):
if ((netcnt < 0) && (errnc == EWOULDBLOCK)) netcnt = 0;
if ({netcnt < 0)

errexit("sosend write error?);
else

if ((netcnt »= 0) && (netcnt < cnt))

fprintf(stderr, "sosend : some data has been 1ost\n\007\0C7"):

}
}* Close synchroncus/non bloccking socket connection */
detfini ()

int oftf = 0

1% rmetfd = 0
forintfistderr, "Please wait up to %d seconds for completionin®.
i Timelimit):
scioctlinetfd, FTONRBIQ, Aoff':
socloseinetfd):
nettd = ~1;

#1

* Netwocrk order to host order transtorm, not all of the data field are inciuded
vet. Add more statements 1f needed and modify the hton simnet() too */
* ntoh simres (PDU Ly *

toh o simnot

LAt
union |
char *tmopa:
unsigned short *tmpui;
yotmopui
union
char *tmpe:
; tloat *tmpf;
} ;otmo:
tmp.tmpf - &opdu bhuf.JVAPDU.VADATA.location([0];
} swapd(tmp.tmpc)

! tmp.tmpf = &pdu buf .VAPDU.VADATA.location[1];
swapd4(tmp.tmpc) e
I tmp.tmpf = &pdu _but .VAPDU.VADATA.location[2];
swapad(tnp.tmbc)
tmpui .tmpui = &pdu buf .VAPNDU.VADATA.hdr.vehiclelD:
swap2(tmpui.tmpc)
for (i=0; 1<=2; 1++)
for (J=0; J<=2; 3++) |
tmp.tmpf = &pdu buf .VAPDU.VADATA.rotation(i] [1];:
swapd (tmp.tmpch;

1
|
i

1

return(pdu bu®.ANYPDU.ANYHDR.kind):

!

/* Host order to network order transform, not all of the data field are included
» vet. Add more statements if needed and modify the ntoh_simnet!) tcc *,
I* hton_simnet (struct PDU buf) */
ton _simnet ()
{
int 1, s
union {
char *tmpc;
unsigned short *tmpui:
) tmpui;
union {
char *tmpc:
float *tmpf:
botmp e

‘ tmp.t pf = &odu buf .VAPDU.VADATA.location{0];
swapd4itmp.tmpc)
tmp.tmpf = &pdu but . VAPDU.VADATA.location{1];
swapd (tmp.tmpc)
tmp.tmpf = &pdu_buf.VAPDU.VADATA.location[2];
swap4tmp.tmpc)
tmpui.tmoul = &pdu_buf .VAPDU.VADATA.hdr.vehiclelID;
swapZltmoul.tmpo!:

= 7

for ii1=0: 1<= T4+
for (3=0: =21 Je+
tmop.tmof = &odu buf .VAPDU.VADATA.rotation[i] [j]:
swaniditmn.otmone e

+ This subroutire deoes the same work as ntohl(), htonl(). */
t

| tmn o= *ptr;
*ptr - *{ptr+s
*{ptr+31 = tnp:
tmn = *ipur+in;e
*Iptr+l = *{ptr+z,
*{ptr+2 = tmn:

* This subroutine does tne same work as ntohs(), htons(). */
swapz(char *ptri

char tmn:

tmp = *ptr;
*ntr = *(ptr+]l):
*(ptr+l1) = tmp:;

* Th.s subroutine is for debugaging purpose only, it will DUMP the content ot a
link level packet in hexdecimal*/

* dump ether (struct ether ether buf) */

ftump ether ()

netcnt::

tprintf{stderr,"ETHER content\n"):

‘ datalength.p_datalength = ntohs (ether_buf.simnet_data.e_datalength):

fprintf (stderr,"Source addr T %2X=%2X-%2X-%2X-%2x-%2x\n",
ether_buf.e_shost [0], ether_buf.e_shost (1], ether_buf.e_shost {21,
ether_buf.e_shost [3], ether_buf.e_shost [4], ether_buf.e_shost [5]);

fprintf(stderr,”Destination addr : $%2x-%2x-%2x-%2x-%2x\n",
ether_buf.e_dhost [0], ether_buf.e_dhost [1], ether_buf.e_dhost [2
ether_buf.e_dhost [3], ether_buf.e_dhost (4], ether_buf.e_dhost (5

fprintf(stderr,"%2x ",datalength.p_datalength);

netcnt = datalength.i_datalength.length:

for (i=0, j=3:; i<(netcnt-HEADER_SIZE-2); i++, j++) {

)

0
— s

~e

fprintf(stderr,"%2x ", ether_buf.simnet_data.e_data{i]);
! if (3 >= 17)
=03

I forintf(stderr,™\n");
)

3
forintf(stderr,"\n");

* This subroutine is for debugging purpose only, it will DUMP the content cof a
pdu packet in hexdecimal*/
-ump_pdu ()

i

& int i, 3, netcnt;

fprintf(stderr."PDU content\n");
datalength.p_datalength = ntohs (ether_buf.simnet_data.e _datalength:};

! netcnt = datalength.i_datalength.length;

' for (i=0, j=1: i-(netcnt-HEADER_SIZE-2); i++, J++) |
forintf(stderr,”%2x ", pdu_buf.DATAONLYPDU.DATAONLVY{i]}:
l if (3 >= 17y !
3=0;
forintf{stderr,™\n"):

} ‘)

forintf{stderr,"\n"):

3

!

* This subrouiline is for debugging purpose only, it will DISPLAY the content of
a pdu packet */

‘isplay_pdu ()

int i, 7J;
union {
char *tmpc:
float *tmpf:
botmps
fprintf(stderr, "Rotation\n"):
for (1=0; i<=2; 1++)
for (3=0; j<=2; j++)
fprintf(stderr,"sd %d %1f\n",i,J,pdu_buf.VAPDU.VADATA.rotation(i][]])
fprintf(stderr, "Location\n");
fprintf(stuerr, "$1f\n",pdu_buf .VAPDU.VADATA.location{0]):
fprintf(stderr, "%1f\n",pdu_buf.VAPDU.VADATA.location(11);
fprintf(stderr "%1f\n",pdu_buf.VAPDU.VADATA.location(21);
fprintf(stderr, "%u\n",pdu_buf.VAPDU.VADATA hdr.vehiclelID};

B=54%

